

BTP-3 ACP MANAGEMENT PLAN

EX-DE	01	26/02/24	Final Issue					
EX-DE	00	11/09/23	Final Issue					
Validity Status	Rev. Number	Date	Description	Prepared by	Checked by	Approved by	Contractor Approval	Company Approval
Revision index								
 eni australia				Project name BLACKTIP OPERATIONS	Company identification 000036_DV_PR.D&C.0883.000 Job N. _____			
				Contractor identification Contract _____				
(Vendor logo and business name)				Vendor identification Order N..... 				
Facility Name BLACKTIP		Location NORTHERN TERRITORY & WESTERN AUSTRALIA		Scale	Sheet of Sheets			
				1:1	1 / 38			
Document Title BLACKTIP-P3 ANNULUS CASING PRESSURE MANAGEMENT PLAN				Supersedes N..... Superseded by N..... Plant Area Plant Unit				

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.		Sheet of sheets 2 / 38
			Validity Status	Rev. No.	
			EX-DE	01	

REVISION HISTORY

Rev.	Date	Nr. of sheets	Description
00	11/09/23	37	Final Issue
01	26/02/24	38	Final Issue C-annulus MAWOP & TTOC review

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.		Sheet of sheets
			Validity Status	Rev. No.	
			EX-DE	01	

TABLE OF CONTENTS

1. INTRODUCTION.....	5
1.1 Scope.....	5
1.2 Summary of Findings	5
1.3 Blacktip Development.....	6
1.4 P3 Well Information	7
1.4.1 Well Details	7
1.4.2 Well Construction History	8
1.4.3 Well Details	8
1.4.4 Geology and Hydrocarbon Shows	10
1.4.5 Well Schematic (Casing, Completion & Wellhead).....	12
1.4.6 Current Well Integrity Status	16
1.4.7 Well Barrier Diagrams	19
2. ANNULAR CASING MANAGEMENT PROCESS	21
2.1 Management System and Principles	21
2.1.1 Management Principles	21
2.1.2 Well Integrity Policy.....	22
2.1.3 Well Integrity Management System	22
2.1.4 Management of Wells with Sustained Casing Pressure	23
2.2 Responsibilities.....	24
2.2.1 Organisational Structure and Tasks	24
2.2.2 Personnel Responsibilities.....	24
2.3 Diagnostics	25
2.3.1 Gas Sample Fingerprinting	25
2.3.3 Archer VIVID Logging – Leak Detection.....	26
2.3.4 Leak rate and Annulus fluid level.....	28
2.3.5 20" x 13-5/8" annulus Pressure Build-Up During Production	30
2.3.6 Diagnostic Conclusions.....	30
2.4 Documentation and Record Keeping	31
2.4.1 Well Integrity Tool (WIT).....	31
2.5 MAASP & MAWOP.....	32
2.6 Well Operations Considerations	34
2.6.1 Monitoring Method and Frequency	34
2.6.2 Additional monitoring considerations for Blacktip P-3.....	34
2.6.3 Corrosion/Erosion Management Considerations	35
2.6.4 Well Abandonment considerations	36
3. RISK ASSESSMENT	37

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.		Sheet of sheets 4 / 38
			Validity Status	Rev. No.	
			EX-DE	01	

TABLES

Table 1.1:	Formation depths and pressures	10
Table 1.2:	Activity and Annulus Pressure History.....	18
Table 2.1:	Well Operation Standing Principles	21
Table 2.2:	Well Operation Sequence	28
Table 2.3:	MASSP & MAWOP Calculations.....	33
Table 2.4:	Blacktip Annulus Alarm Levels (PSI).....	34

FIGURES

Figure 1.1:	Blacktip Field Map	6
Figure 1.2:	Schematic of Wellhead Platform.....	7
Figure 1.3:	PPFG Schematic.....	11
Figure 1.4:	As Built Casing Schematic.....	12
Figure 1.5:	As Built Completion Schematic 1a.....	13
Figure 1.7:	As Built Completion Schematic 1b.....	14
Figure 1.8:	Wellhead and Production Tree General Arrangement	15
Figure 1.9:	20" x 13-5/8" Casing Annulus Pressure PBU 24 hrs	16
Figure 1.10:	20" x 13-5/8" Casing Annulus Pressure PBU initial 60 min.....	17
Figure 1.11:	2 nd 20" x 13-5/8" Casing Annulus Pressure PBU initial 60 min.....	17
Figure 1.12:	Primary Reservoir Barrier Diagram.....	19
Figure 1.13:	Mount Goodwin A1 Sands Barrier Diagram.....	20
Figure 2.1:	Asset Integrity Cycle	22
Figure 2.2:	Gas Fingerprinting Plot	25
Figure 2.3:	Surface Graph While VIVID Logging	26
Figure 2.4:	VIVID Full Log Results	26
Figure 2.5:	Mount Goodwin VIVID Log Results	27
Figure 2.6:	Initial Bleed Off Results	28
Figure 2.7:	Leak Flowrate Results.....	29
Figure 2.8:	Annulus Fluid Level	29
Figure 2.9:	Annulus Pressures During and Following ScanWell Survey.....	30
Figure 2.10:	Steady State and MAWOP Pressures.....	32
Figure 2.11:	Interwell MSAS & VR Sense.....	34
Figure 2.12:	Baker MID Tool Specifications	35
Figure 2.13:	UKOG Restoring Cap Rock Diagram.....	36

 eni australia	Company document identification	Owner document identification EX-DE	Rev. index.	Sheet of sheets
	000036_DV_PR.D&C.0883.000		Validity Status	
			Rev. No.	5 / 38

1. INTRODUCTION.

1.1 Scope

This document provides the background history and guidance for managing the observed 20" x 13-5/8" casing annulus pressure in the Blacktip-P3 well. Leveraging from API RP 90-1 Annular Casing Pressure Management for Offshore Wells, the document seeks to detail the following:

- P3 Well history.
- Observation and nature of the observed casing pressure.
- Monitoring.
- Proposed diagnostic methods and frequency.
- MAASP and MAWOP determinations.
- Documentation & recoding.
- Risk Assessment.
- Implications for the production phase of the well
- Implications for the future abandonment of the well
- Contingency planning

This information has been collated to ensure that well integrity is maintained, and risks are managed to ALARP during the well life cycle.

1.2 Summary of Findings

Once the 20" x 13-5/8" casing sustained casing pressure (SCP) had been confirmed, a series of diagnostic tests were undertaken to determine the source and magnitude of the gas in the annulus. Tests were also undertaken to understand the annulus status, with respect to the cement bond, cement level and fluid levels.

A sample of gas taken from the annulus, confirmed a close match to the Mount Goodwin gas, which has a stratigraphic depth of 864 m MD to 1,145 m MD. A leak detection log was carried out using the VIVID SEAL acoustic logging tool string. The most prominent acoustic energy changes were observed within the Mount Goodwin (1,050 m-1,145 m), indicating movement of gas within this interval. Some minor acoustic events occurred between units A1_6 and Tern formation (1,150m-1,300m).

A ScanWell leak measurement survey was conducted with the well in production and the 20" x 13-5/8" casing annulus open. The measured stable flowrate was 6.35 kg/hr, which equates to 4.55 scf/min. The leak rate through the cement sheath was minor and less than the allowable API6A wellhead valve leak rate. The fluid level was also measured to be 5 m below the wellhead datum.

Tests confirmed the source as the shallow Mount Goodwin reservoir, with the cause being a cement micro annulus that allowed pressure transference, with a wellhead pressure of 670 psi+/- and a minor flowrate. This has allowed the risks to be quantified and mitigations to be put in place, allowing the well to be produced safely.

 eni australis	Company document identification	Owner document identification	Rev. index.		Sheet of sheets
	000036_DV_PR.D&C.0883.000		Validity Status	Rev. No.	
			EX-DE	01	

1.3 Blacktip Development

The Blacktip gas field in WA-33-L in the Bonaparte Gulf of Western Australia was discovered in 2001. The field is located 300 km off the southwest of Darwin in Western Australian waters. The field map is shown in Figure 1.1.

The Blacktip WHP is an unmanned six-slot wellhead platform and is not equipped with any processing facilities. The platform is located over the Blacktip Field in approximately 50 m of water. Currently there are three (3) production wells on the WHP.

A key feature of the design is that no processing takes place on the WHP. The reservoir fluids are sent onshore via the 17" ID GEP to the YGP for processing. This feature simplifies the WHP design considerably and allows a minimum facilities approach with clear benefits in reducing manning requirements to a minimum.

No automatic blowdown facility is included in the design; pipe work on the WHP is designed to full reservoir closed-in tubing head pressure (CITHP) with a maintenance vent for manual depressurisation.

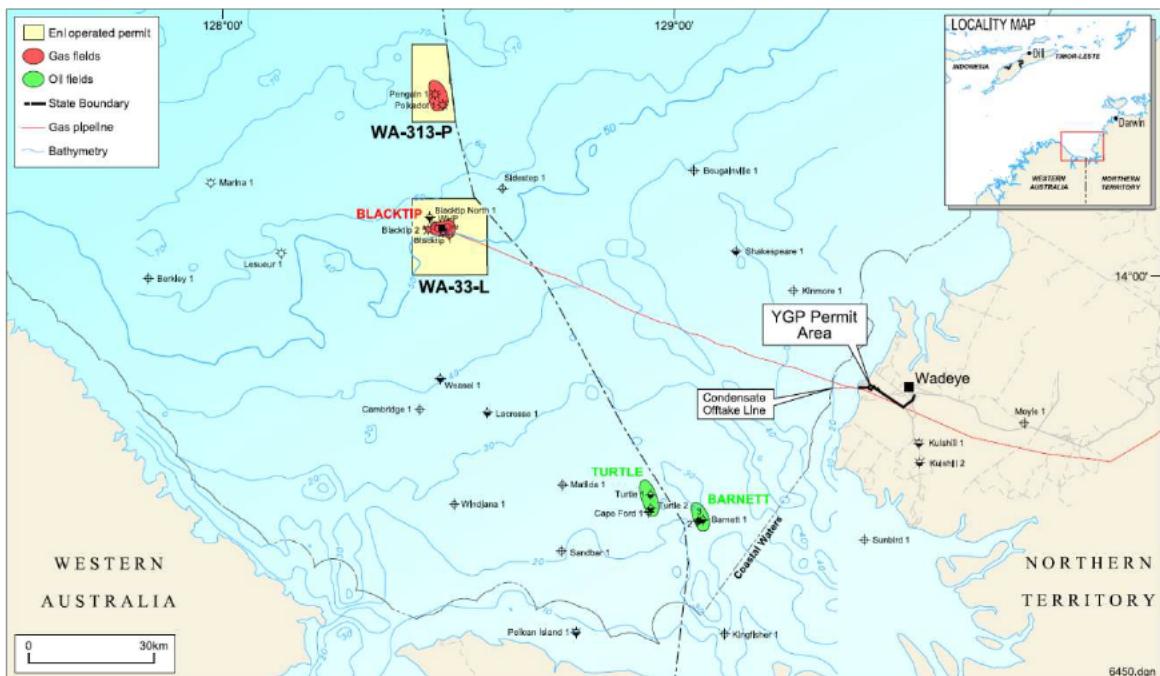
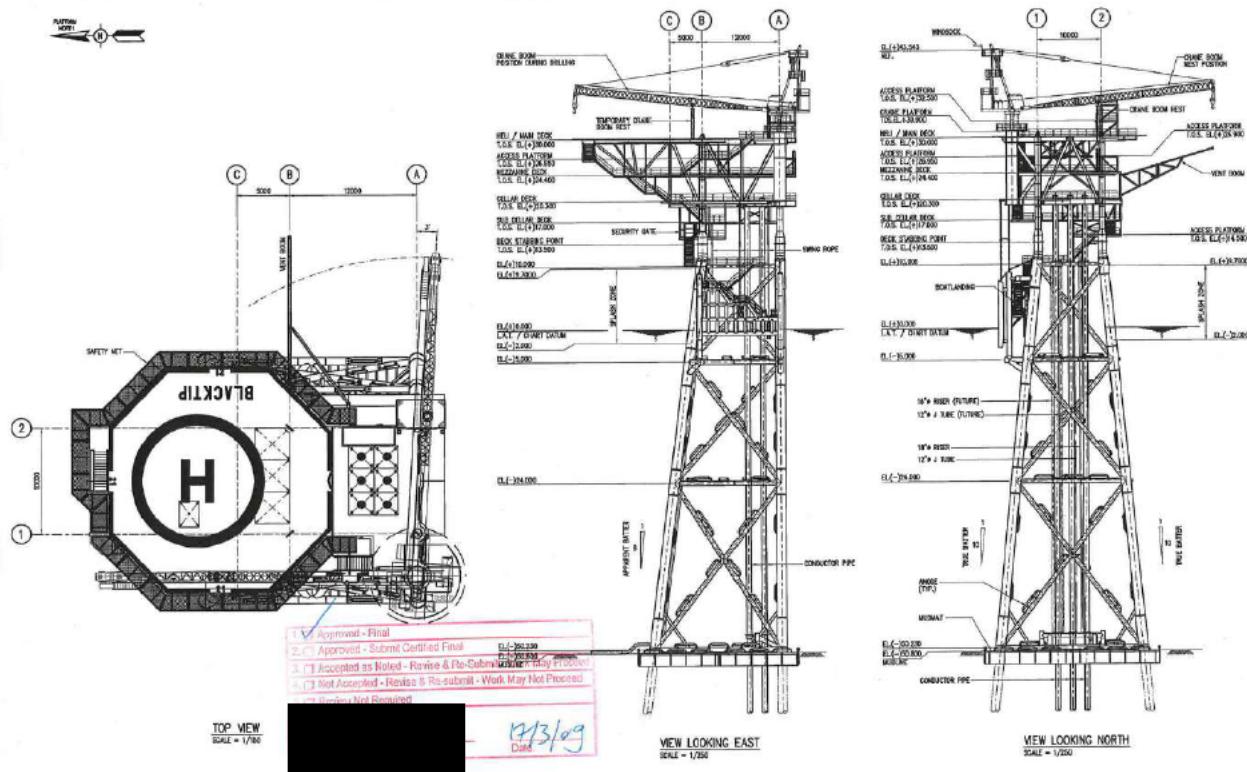



Figure 1.1: Blacktip Field Map

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.		Sheet of sheets
			Validity Status	Rev. No.	
			EX-DE	01	7 / 38

Figure 1.2: Schematic of Wellhead Platform

1.4 P3 Well Information

1.4.1 Well Details

Blacktip P3 was drilled and completed as a gas production well by the Valaris V107 jackup rig. The well was spudded on the 16 December 2022 and drilled to a total depth of 3,529 m MDRT on 19th of January 2023. The well was completed, and production flow tested on 30th May 2023.

Well:	Blacktip-P3	Operator:	ENI (100%)
Well Type:	Development	Partners:	None
Basin:	Bonaparte	Purpose:	Development Well
Tenement:	WA-33-L		
Objective:	Keyling Sst's (A2, A4)	Surface Location	
Status:	Completed as a gas producer	Latitude:	13° 53' 41.734" South
Rig on Location:	04/12/22 @ 10:30 hr 30/05/23 @ 22:30 hr	Longitude:	128° 29' 02.749" East
Rig Released:		Easting:	444 261.34 m
		Northing:	8 463 834.03 m
		TD Location	
Total Depth:	3,529.0 mMDRT; 3,200.17 m TVDSS	Latitude:	13° 54' 18.97" South
RT Elevation:	57.01 m above LAT	Easting:	443 956.99 m
Water Depth:	50.8 m below LAT	Northing:	8 462 689.34 m
Drilling Rig & Type:	Valaris 107 Jackup KFELS MOD V-B	Datum:	GDA94 UTM Zone 52

 eni australia	Company document identification	Owner document identification Rev. index. Validity Status Rev. No. EX-DE	Sheet of sheets
	000036_DV_PR.D&C.0883.000		
			8 / 38

1.4.2 Well Construction History

The 30" conductor casing was pre-set in 2009 at a depth of 186 m MD/186 m TVDRT.

The 26" section was drilled to 955.0 m MDRT/ 881.25 m TVDSS and the 20" 133 ppf K-55, Tenaris Blue casing set and cemented at 949.39 m MD/876.15 m TVDSS. TTOC for the 20" casing is seabed at 50 m MDRT.

The 17-1/2" hole was drilled with PERFLEX WBM @ 1.15 sg – 1.20 sg to 2,352.55 m MDRT / 2,078.91 m TVDSS and the 13-5/8" 88.2#, L-80, Tenaris Blue casing set and cemented at 2,345.24 m MD/2,078.91 m TVDSS. TTOC for the 13-5/8" casing is at 644 m MDRT, which is 150 m inside the 20" casing shoe. The cement was not logged for height or quality of seal.

The 12-1/4" hole was drilled with PERFLOW WBM 1.10 -1.15 sg to TD at 2,986 m MDRT/2,675.52 m TVDSS. The 9-5/8" 53.5# L-80, 13Cr, Tenaris Blue casing liner set and cemented with the shoe at 2,985 m MDRT/2,673 m TVDSS with the liner top at 2,243.52 m MDRT/1,991.46 m TVDSS. The liner was cemented to the liner top at 2,243.52 m MDRT. The cement was logged using a USIT and confirmed to be at the TOL.

The 8-1/2" hole was drilled with PERFLOW WBM at 1.15 – 1.19 sg to TD at 3,529 m MDRT / 3,200 m TVDSS. The 7" 29# L-80, 13Cr, Tenaris Blue casing liner set and cemented with the shoe at 3,525.25 m MD / 3,197.51 m TVDSS with the liner top 2,942 m MDRT / 2,632.91 m TVDSS. The liner was cemented with a planned TOC at the liner top 2,942 m MDRT. The cement was logged using a USIT and TOC was confirmed to be at the 3,008 m MDRT.

The well was then completed with a 7" 13% Cr tubing completion with five (5) zonal isolation packers and an upper completion packer.

No pressure had been recorded in the casing annuli from the 7th of January through to the 13th of February. During the completion installation operations between 25th of January 2023 and 24th of February 2023 the 20" x 13-5/8" casing annulus pressure was observed to increase to 660 psi. This initiated an annulus pressure investigation which has resulted in the writing of this casing annulus pressure management plan.

1.4.3 Well Details

- Hole Sections

Hole Size ("")	Depth (m MDRT)	Depth (m TVDSS)
36	Conductor driven	Conductor driven
26	955.00	881.25
17-1/2	2,352.55	2,085.20
12-1/4	2,986.00	2,675.52
8-1/2	3,529.00	3,200.17

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.	Sheet of sheets
			Validity Status	
			Rev. No.	9 / 38

- Casing Details - Depths

Casing Size (")	Casing Grade / weight	Top Depth (mMDRT/TVDSS)	Shoe Depth	
			m MDRT	m TVDSS
30	1.5" WT X-52 RL-4S	35.33 / 35.33	186.56	129.55
20	133 ppf K55 Quick Seal DPLS	35.10 / 35.10	949.39	876.15
13-5/8	88.2 ppf L80 TSH Blue	34.80 / 34.80	2,345.24	2,078.91
9-5/8	53.5 ppf L80 13 Cr TSH Blue	2,243.52 / 1,991.46	2,982.83	2,672.45
7	29 ppf L80 13 Cr TSH Blue DPLS & 29 ppf L80 13 Cr TSH Blue	2,942 / 2,632.91	3,526.25	3,196.56

- Casing Details - Performance

Casing Size (in)	Specification	Setting Depths		Performance		
		M MDRT	Burst psi	Collapse psi	Tension kips	
30" Conductor String (Hammered 2009)						
30" Casing	1.5" WT, 310 lb/ft, X-52, RL4S	WHD - 186.56		3,000	1,581	4,738
20" Surface Casing String						
20" Casing	133# K55 Quick seal DPLS	WHD - 949.39		3,060	1,500	2,125
13-5/8" Production Casing String						
13-5/8" Casing	88.2# L-80 Tenaris Blue	WHD - 2,345.24		6,420	3,980	2,042
9-5/8" Production Liner						
9-5/8" Liner	53.5#, L-80, 13Cr, Tenaris Blue	2,243.52 – 2,982.83		7,930	6,620	1,244
7" Production Liner						
7" Liner	29#, L-80, 13Cr, Tenaris Blue	2,942 – 3,526.25		8,160	7,030	676

- Cementing Details

Cement Summary	Hole Section			
	26" x 20" Casing	17-1/2" x 13- 5/8" Casing	12-1/4" x 9-5/8" Liner	8-1/2" x 7" Liner
Lead Slurry Weight	1.49 sg	1.43 sg	1.43 sg	1.43 sg
Tail Slurry Weight	1.89 sg	1.89 sg	1.89 sg	1.89 sg
Tail length	150 m	150 m	100 m	100 m
TOC	50 m MDRT Seabed	TTOC 644 m MDRT	TOL 2,243.52 m MDRT Logged	3008 m MDRT Logged

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.	Sheet of sheets
			Validity Status	
			Rev. No.	10 / 38

- FIT/LOT

Type	Depth (m TVDSS)	EMW (sg)	Comments
FIT	876.15	1.40*	See note below on minimum formation strength assumption
FIT	2,078.88	1.50	1,206 psi on surface. MW 1.10 sg

*The 20" shoe formation strength has been assessed by the Eni corporate subsurface team using a post-drilling PPFG study and a shoe strength of 1.6 sg (2142 psi) has been assessed to be the minimum fracture gradient.

- Drilling Fluids

Mud Type	Depth Interval (mMDRT)	MW (sg)	ECD (sg)	Comments
Gel / Polymer	186.56-955.0	1.03 - 1.08	-	N/A - no APWD
PERFLEX WBM	955.0-2,352.5	1.15 - 1.20	1.20	
PERFLOW WBM	2,352.5-2,986.0	1.10 - 1.20	1.19	
PERFLOW WBM	2,986.0-3,529.0	1.15 - 1.19	1.23	

1.4.4 Geology and Hydrocarbon Shows

The table below details the formations drilled and hydrocarbon shows encountered on the Blacktip P3 well.

Table 1.1: Formation depths and pressures

Mud Type	mMDRT	mTVDSS	Comments
Seabed	107.81	50.8	N/A - no APWD
Base Cretaceous	457.00	399.96	
Top Mount Goodwin	864.56	797.80	
Goodwin A1 Sandstone	1,050.50	966.72	MDT Formation pressure 1,432 psi @ 985.5m TVD SS
Tern Formation	1,340.20	1,217.28	
Dombey Formation	1,419.60	1,285.30	
Cape Hay Formation	1,428.20	1,292.67	
Pearce Limestone	1,798.00	1,609.68	
Torrens Shale	1,812.10	1,621.77	
Torrens Sand	1,836.90	1,643.05	
Fossil Head Shale	1,860.00	1,662.88	
Fossil Head Sand	1,867.90	1,669.66	MDT Formation pressure 2,621 psi.
Keyling Formation	2,392.16	2,119.25	MDT Formation pressure 2,818 psi.
Treachery Formation	3,146.87	2,831.27	
TD	3,529.00	3200.17	
Seabed			

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index	Sheet of sheets
			Validity Status	
			Rev. No.	11 / 38

BT-P3_PPFG_PostDrilling

Wellbore: POST Airgap: 57 m Water depth: 51 m

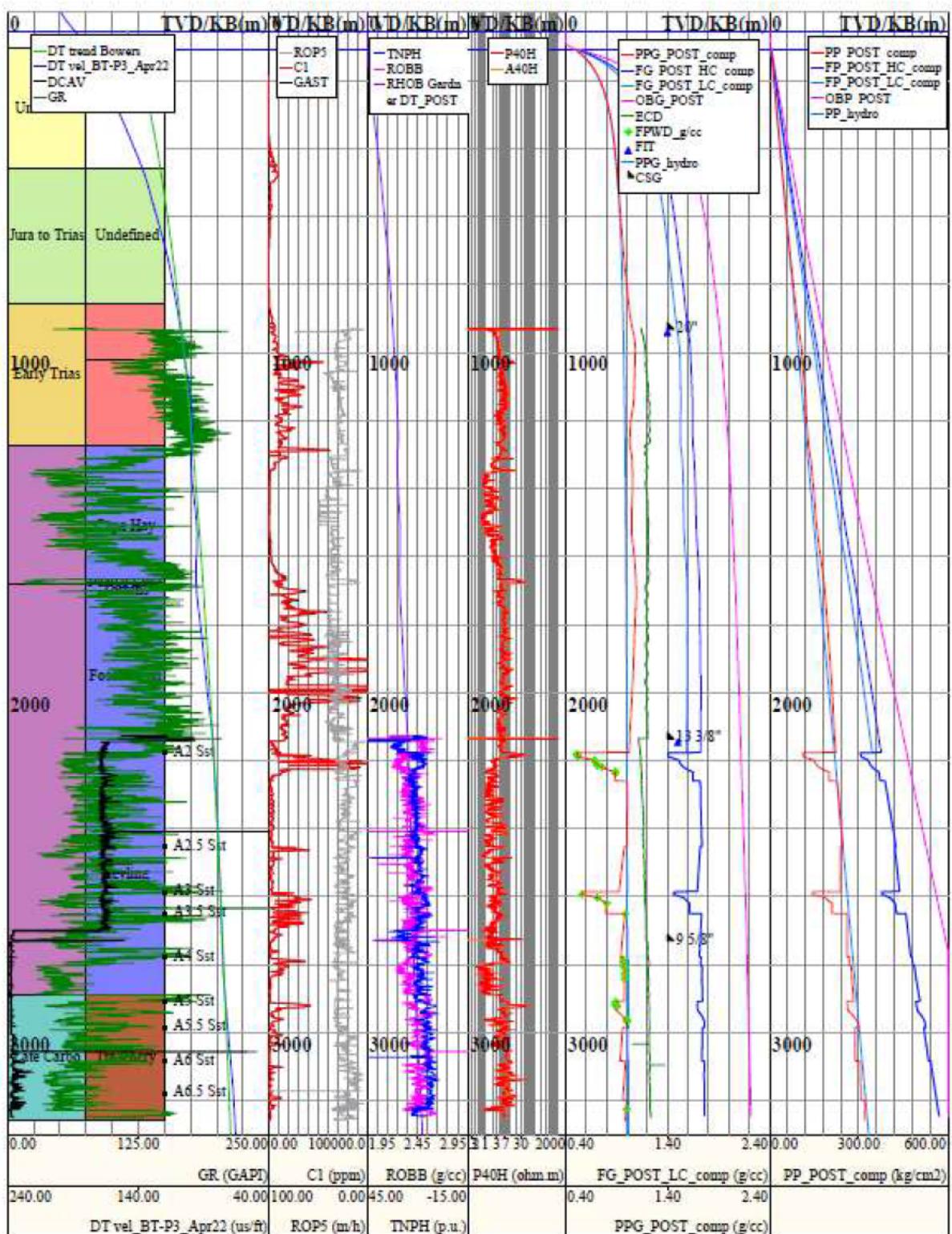
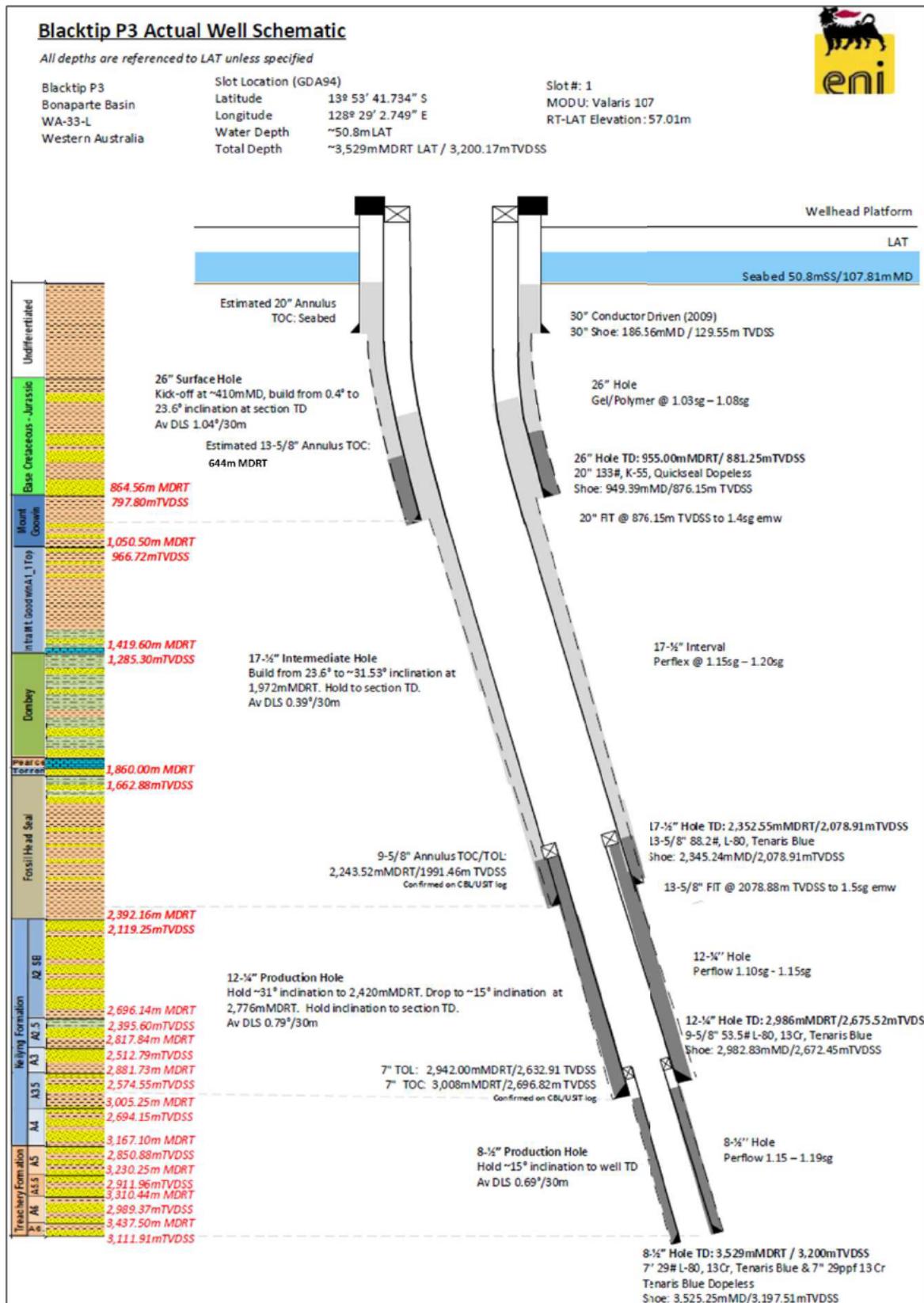
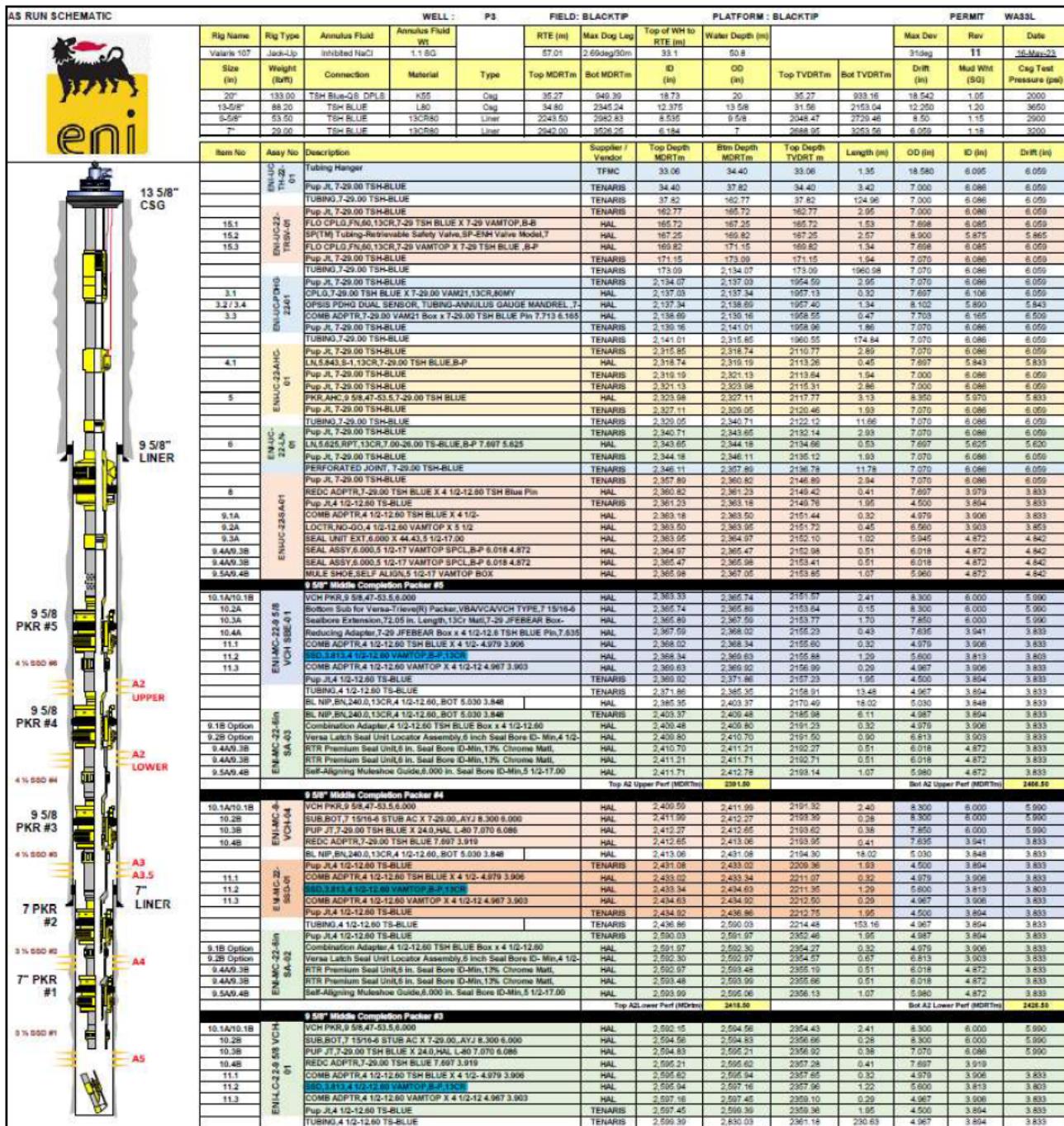



Figure 1.3: PPFG Schematic


 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.	Sheet of sheets
			Validity Status	
			Rev. No.	12 / 38

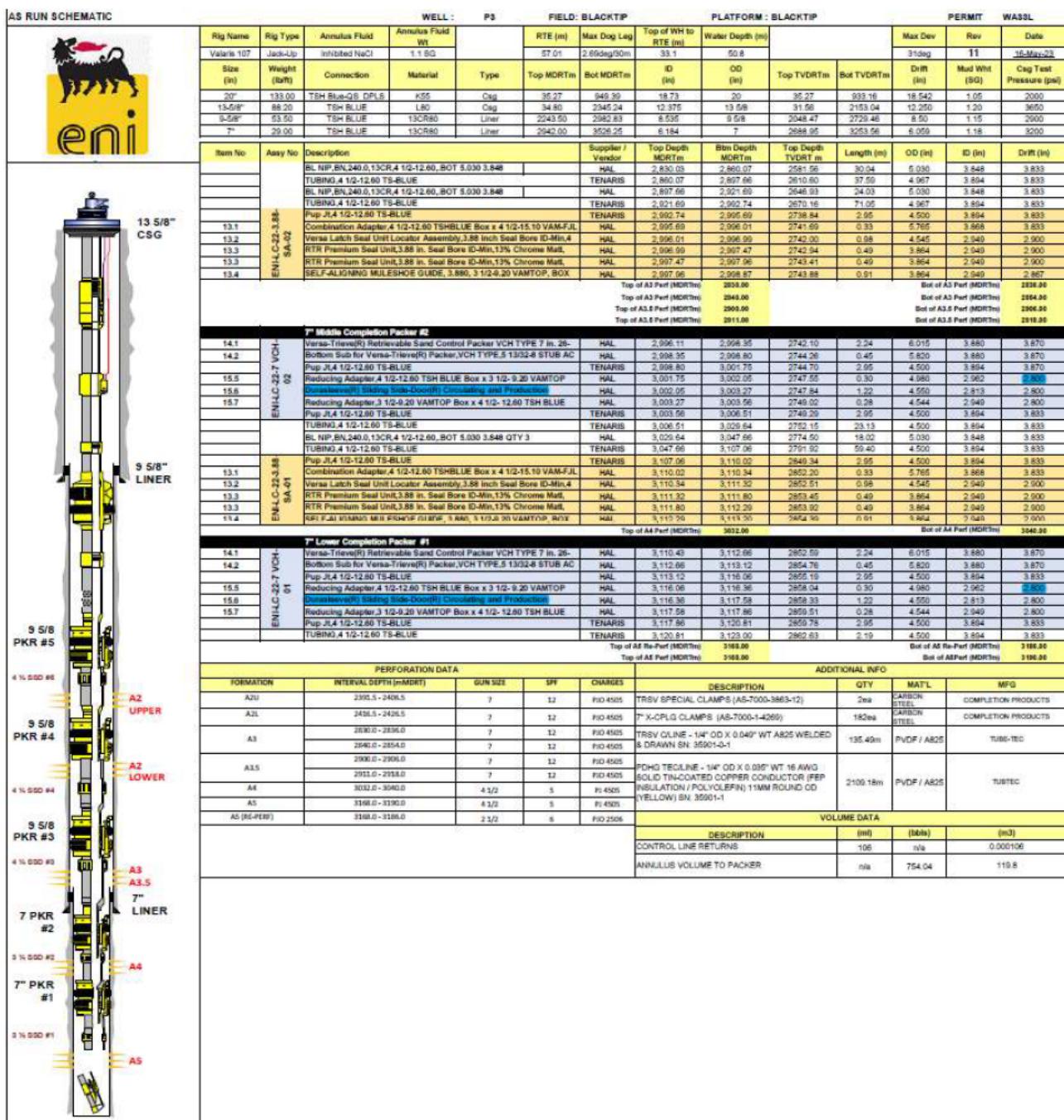

1.4.5 Well Schematic (Casing, Completion & Wellhead)

Figure 1.4: As Built Casing Schematic

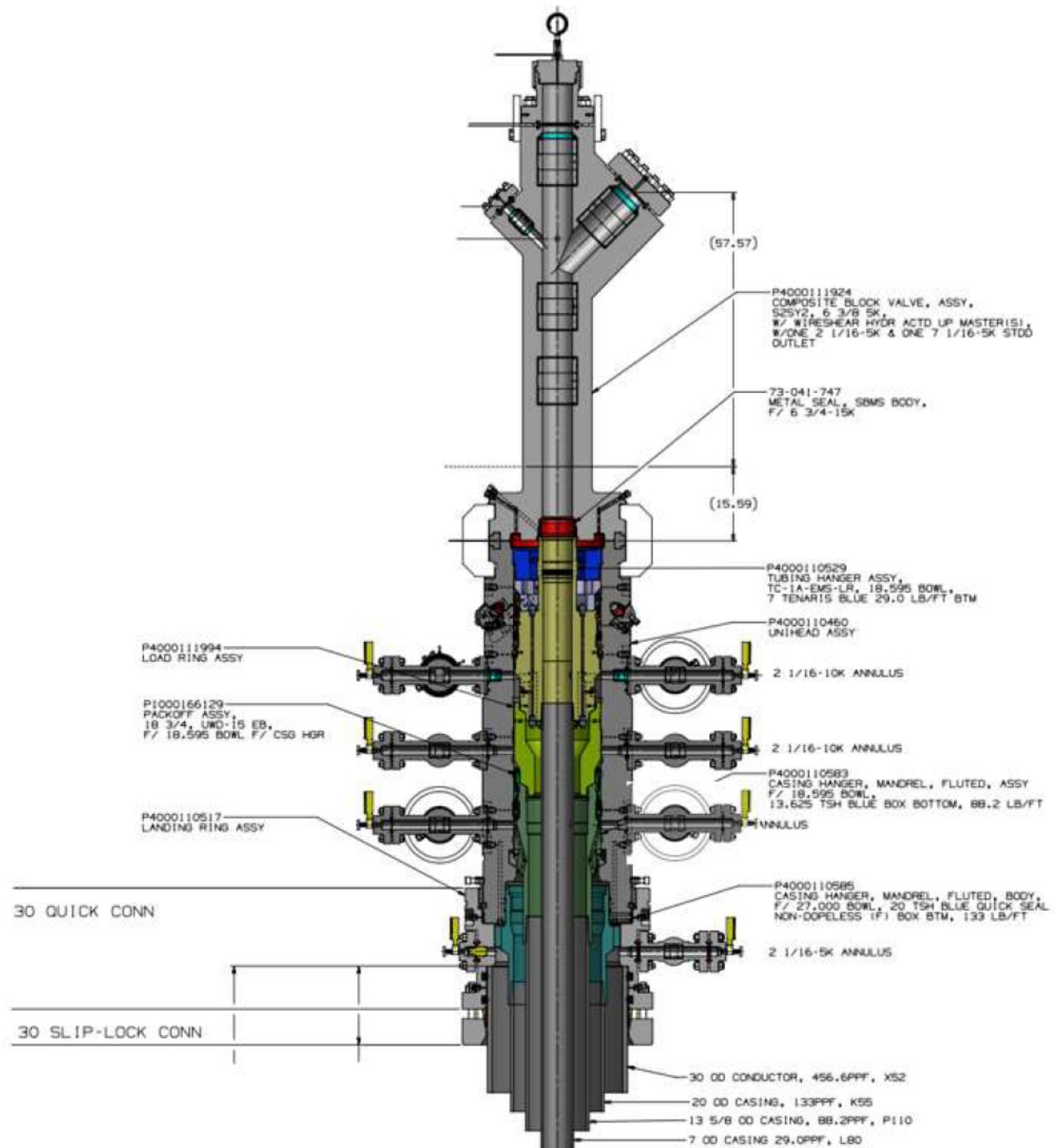
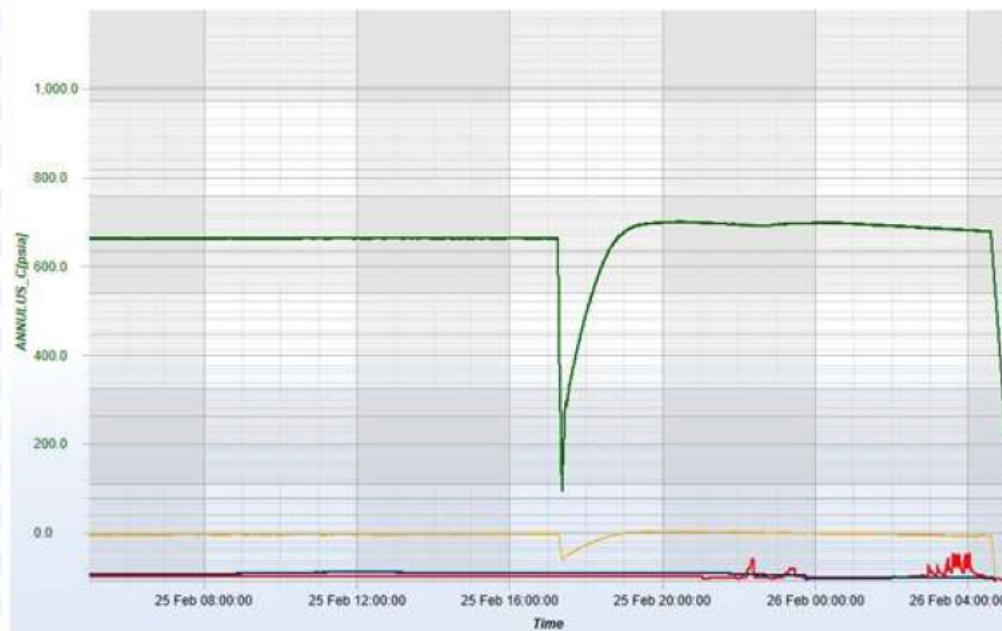

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.		Sheet of sheets
			Validity Status	Rev. No.	
			EX-DE	01	13 / 38

Figure 1.6: As Built Completion Schematic 1b

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.		Sheet of sheets
			Validity Status	Rev. No.	
			EX-DE	01	15 / 38

Figure 1.7: Wellhead and Production Tree General Arrangement

 eni australia	Company document identification	Owner document identification	Rev. index.	Sheet of sheets
	000036_DV_PR.D&C.0883.000		Validity Status	
	EX-DE		Rev. No.	16 / 38


1.4.6 Current Well Integrity Status

During the construction of Blacktip P3, all well construction pressure tests were achieved. The two reservoir and completion barriers are still intact and all pre-production well acceptance criteria were achieved. It was only at the conclusion of the completion installation and acceptance testing on 13th February 2023, that the sustained casing pressure on the 20" x 13-5/8" casing annulus was noted.

The source of the 20" x 13-5/8" casing annulus pressure is thought to have occurred due to cement degradation of the 13-5/8" lead casing slurry, 1.43 sg (12.00 ppg). This allowed A1 gas to percolate to surface through a micro annulus in the cement.

A sample of the gas in the annulus gas confirmed a close match to the Mount Goodwin A1 gas. Following the confirmation of the gas composition, a leak detection log, in combination with a series of surface bleed offs, was carried out using the VIVID SEAL acoustic logging tool string. This log confirmed the deepest leak point to be at 1,300 m MDRT, with cross flow between reservoir layers and minor migration up through the cement sheath. The cement sheath barrier element is assessed as degraded, rather than failed. The logging results are explained in more detail, in section 2.3 Diagnostics.

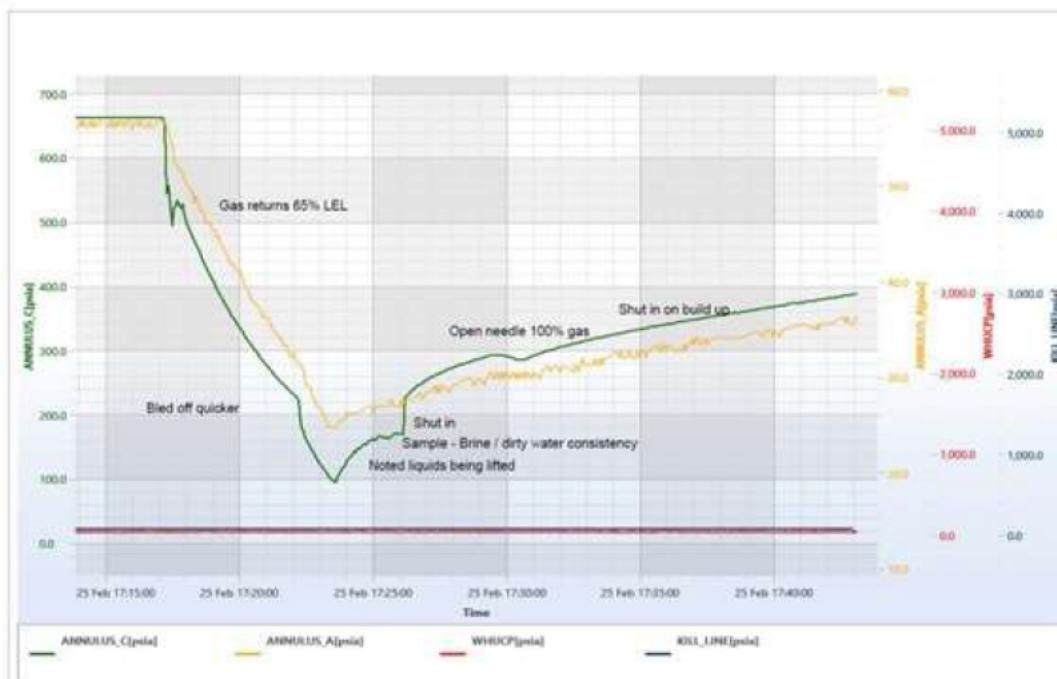
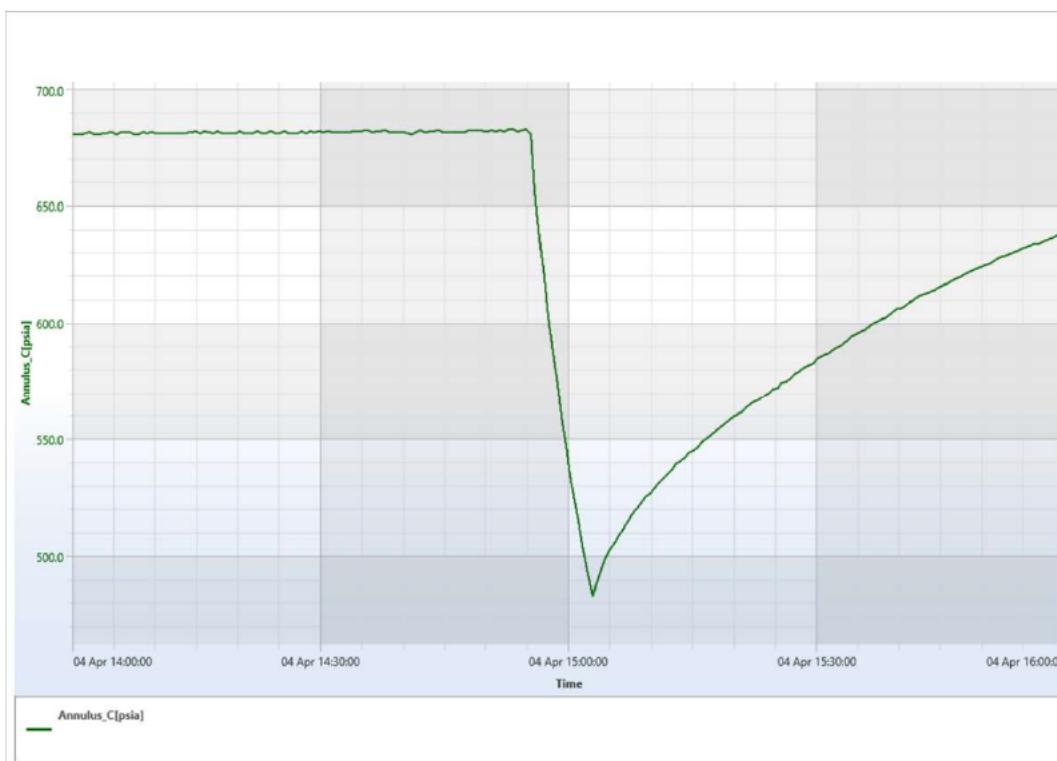

The initial 20" x 13-5/8" casing annulus pressure investigation included two controlled bleed offs, followed by a corresponding pressure build up (PBU). The first of which was conducted on the 25th February 2023. With the well shut in to eliminate any thermal effects from the produced gas, the 20" x 13-5/8" casing annulus pressure, stabilised at 640 psi. This was bled down to 90 psi in 6 minutes and then allowed to build up again over a period of 12 hours. The pressure increased up to 660 psi over period of 3 hours and stabilised at 680 psi after 12 hours. See Figure 1.8 and Figure 1.9.

Figure 1.8: 20" x 13-5/8" Casing Annulus Pressure PBU 24 hrs


The relatively slow build-up of pressure is indicative of a casing micro annulus, allowing small volumes of gas to migrate through the cement and up to a point where the over balance prevents further migration.

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.	Sheet of sheets
			Validity Status	
			Rev. No.	17 / 38
			EX-DE	01

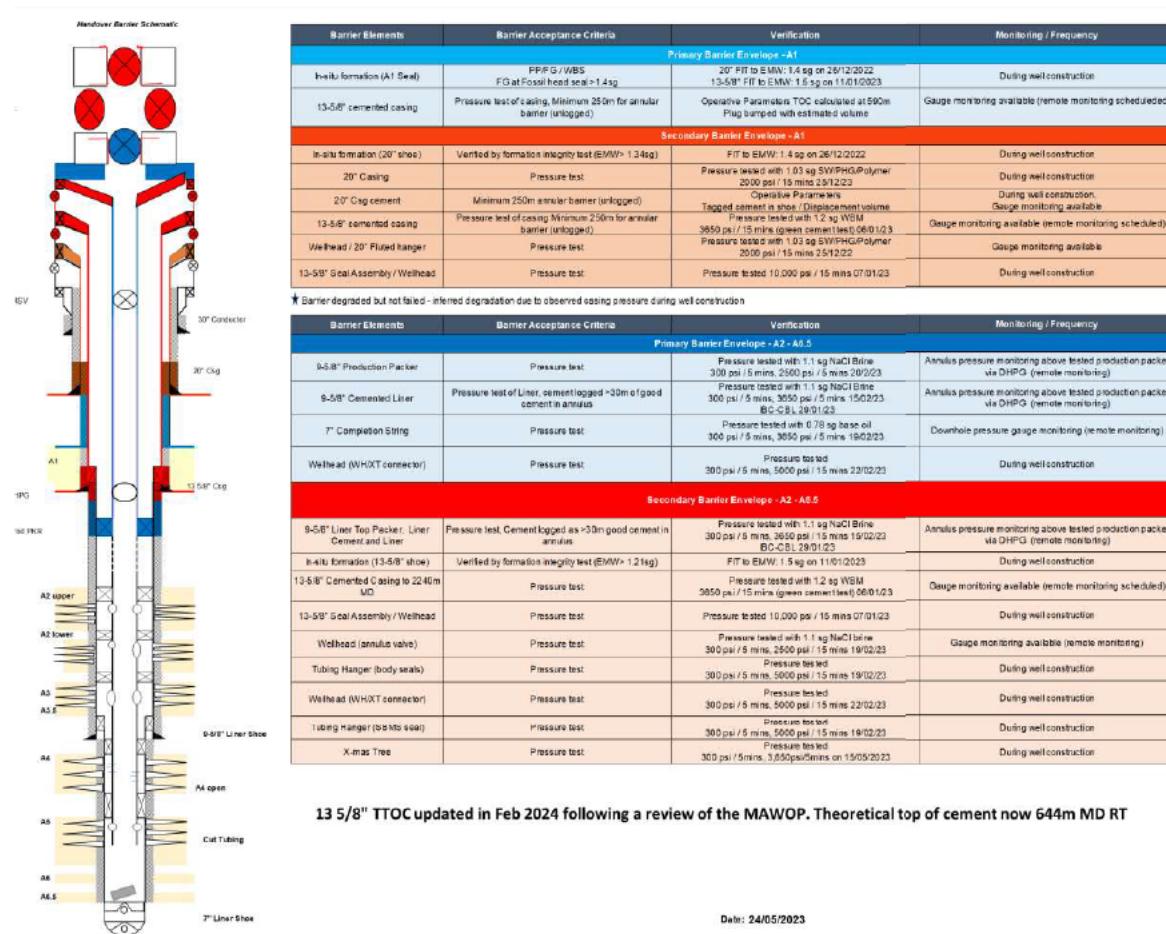
Figure 1.9: 20" x 13-5/8" Casing Annulus Pressure PBU initial 60 min

A second bleed off and pressure build up was conducted on the 4th April 2023. The pressure was bled down through a needle valve from 680 psi until liquid was noted in the returns. The lowest pressure attained was 470 psi after 3 minutes. The pressure built back up to 590 psi in 60 minutes and continued to increase over the following 3 hours to stabilise again at 680 psi.

Figure 1.10: 2nd 20" x 13-5/8" Casing Annulus Pressure PBU initial 60 min

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.		Sheet of sheets
			Validity Status	Rev. No.	
			EX-DE	01	18 / 38

Below is a table detailing the 20 x 13-5/8" casing annulus pressure history, in relation to the well operations during construction, flow testing and during the well diagnostic activities.


Table 1.2: Activity and Annulus Pressure History

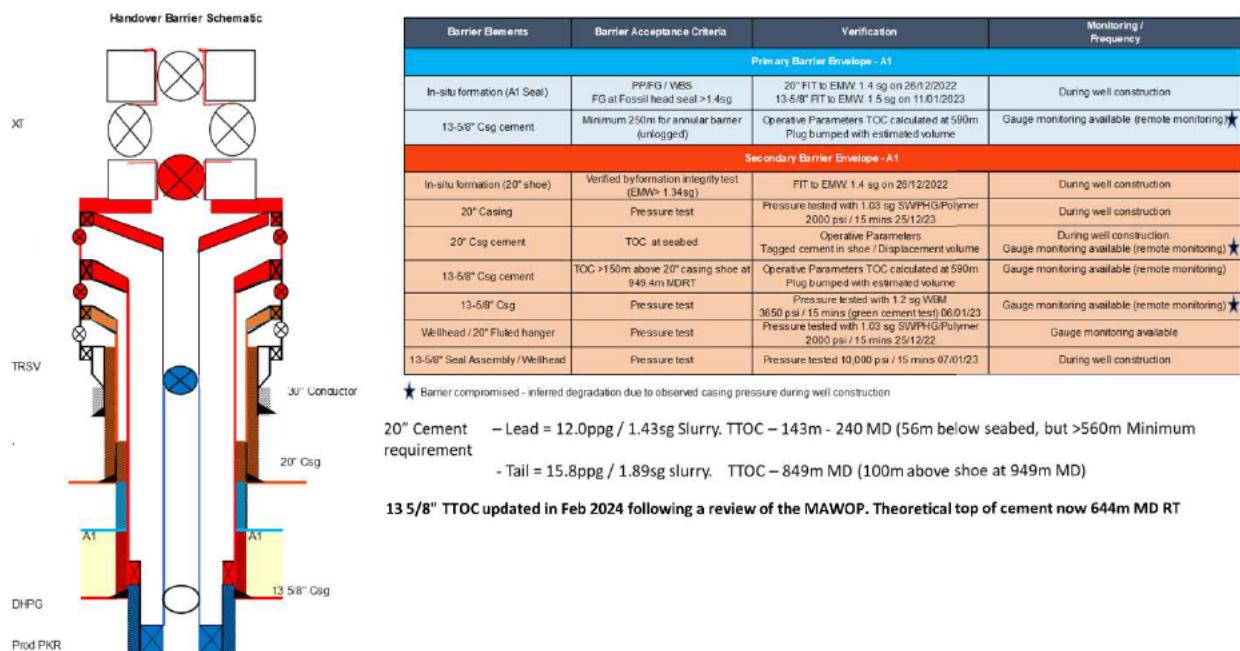
	Event	Date	20" x 13-5/8" Annulus Pressure
1	13-5/8" Casing Cementation, Pressure test to 3,650 psi with 1.2 sg mud.	6 Jan 2023	Zero
2	9-5/8" Liner cementation and pressure test to 2,900 psi with 1.15 sg mud	17 Jan 2023	Zero
3	7" Liner cementation and pressure test to 3,200 psi with 1.19 sg mud	25 Jan 2023	Zero
4	Lower completion Pkr#1 & well 3,650psi with 1.1 sg fluid	1 Feb 2023	Zero
5	Lower completion Pkr#2 & well 3,650psi with 1.1 sg fluid	5 Feb 2023	Zero
6	Lower completion Pkr#3 & well 3,650 psi with 1.1 sg fluid	5 Feb 2023	Zero
7	Pressure noted during wellhead pressure recording	13 Feb 2023	450 psi
8	15th Feb – LC Pkr#5 & well 3,650 psi with 1.1 sg fluid / 5 min	15 Feb 2023	450 psi
9	19th Feb – below prod Pkr 3,650 psi with 1.1 sg fluid / 15 min	19 Feb 2023	450 psi
10	20th Feb – Above prod Pkr & well 2,500 psi with 1.1 sg fluid / 15 min	20 Feb 2023	450 psi
Pressure gauge fault suspected, gauge replaced, and 220 psi pressure increase noted			
11	25th Feb – Bleed off pressure & monitor build up	25 Feb 2025	660 psi
12	20" x 13-5/8" casing annulus gas sample	Mar 2023	660 psi
13	Vivid leak detection logging	14 May 2023	663 psi before bleed offs
14	BT-P3 initial flow period, 20" x 13-5/8" casing annulus thermal expansion	29 May 2023	780 psi, bled down to 660 psi.
15	ScanWell flow survey and liquid level survey	5 Jun 2023	643 psi
16			

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.		Sheet of sheets
			Validity Status	Rev. No.	
			EX-DE	01	19 / 38

1.4.7 Well Barrier Diagrams

The full well barrier diagram is detailed below in Figure 1.11. The well conforms to Eni standards, with two (2) barriers for a gas production well. The primary barrier envelope, including the production packer, tubing and TRSV, are all intact and have been verified on installation and during production testing of the well. The secondary barrier envelope, including the production casings, wellhead, casing hangers and tubing hanger, were confirmed on installation and prior to production testing.

Figure 1.11: Primary Reservoir Barrier Diagram


The Mount Goodwin sands sit outside the primary barrier envelope for the P3 main producing well & reservoir. The primary barrier for the Mount Goodwin A1 sands is the upper section of the 13-5/8" casing cement between 1,050 m MDRT and 20" casing shoe depth of 950 m MDRT.

The secondary barrier envelope for the Mount Goodwin A1 sands includes the 20" casing shoe, with an estimated strength of 1.60sg, the 20" casing, 13-5/8" casing, and the wellhead. This secondary barrier envelope is only partially shared with the secondary barrier envelope of the primary reservoir, specifically the 13-5/8" casing and 13-5/8" casing hanger. The degraded nature of the Mount Goodwin primary barrier results in sustained pressure in the secondary barrier envelope. The ability for hydrocarbon flow is minimal, but pressure transference is constant and stable.

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.		Sheet of sheets
			Validity Status	Rev. No.	
			EX-DE	01	20 / 38

The key elements of determining the risk profile for the P3 well are;

1. The ability of the Mount Goodwin secondary barrier elements to withstand the sustained casing pressure. The elements exposed are;
 - a. Casing hanger seals.
 - b. 20" casing in burst.
 - c. 13-5/8" casing in collapse.
 - d. 20" casing shoe formation.
2. The interaction of the shared secondary barrier elements and the sustained casing pressure in the 20" x 13-5/8" casing annulus, has a material effect on the P3 reservoir secondary barrier mechanical performance. (Covered in Section 2 for calculated pressure limitations and risk assessed outcomes in the event of a failure in the primary or secondary barrier envelopes).

Figure 1.12: Mount Goodwin A1 Sands Barrier Diagram

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.		Sheet of sheets 21 / 38
			Validity Status	Rev. No.	
			EX-DE	01	

2. ANNULAR CASING MANAGEMENT PROCESS

2.1 Management System and Principles

Eni manages well construction and production activities using a guideline known as the MSG (Management System Guidelines) Operations. MSG Operations aims to provide guidance about the operating methods to be followed in the various phases of well integrity and delivery sub-processes, from well design, well completion, commissioning, and decommissioning. To integrate the MSG Operations and its Annex B (Well Integrity & Delivery) requirements with the local and regulatory requirements, Eni Australia has developed a specific process called the Well Process Manual (WPM).

Managing a well with sustained annulus pressure through the well life cycle, will follow the same guiding principles, policies, and responsibilities of the Well Process Manual (WPM).

2.1.1 Management Principles

The well operations process is potentially hazardous and throughout all aspects of the well operations lifecycle, Eni has defined standing principles that must be carried out to ensure all risks are maintained As Low As Reasonably Practicable (ALARP). Eni Australia is following thirteen (13) standing principles as listed in Table 2.1.

Table 2.1: Well Operation Standing Principles

No.	Standing Principles
1.	Perform all work in a documented workflow system.
2.	Ensure HSE is a key value in all well operations.
3.	Comply with Eni corporate technical and HSE requirements, relevant legislation and regulatory advice.
4.	Organise operations structures to clearly define responsibilities, roles and reporting.
5.	Ensure all Well Operation employees and contractors are competent, have the required training and are properly inducted.
6.	Integrate contractor and support services in managing operations and HSE.
7.	Manage risk by identifying hazards, assessing the risk and ensuring controls are in place to reduce risk to ALARP.
8.	Safeguard the occupational health of employees through systems and processes and encourage employees to participate.
9.	Provide procedures for the entire operations process which ensure safety under both normal and unexpected conditions.
10.	Provide a procedure for managing change.
11.	Audit and measure HSE, operational performance and competencies.
12.	Provide a process to improve systems through analysis and feedback.
13.	Support emergency response structures and procedures for handling emergencies (including rescuing, stabilising and evacuating personnel).

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.	Sheet of sheets
			Validity Status	
			Rev. No.	22 / 38

2.1.2 Well Integrity Policy

As per the Eni Well Integrity Management Procedure (STAP-P-1-MG-26526), well integrity is defined as the application of technical, operational and organisational solutions to reduce the risk of uncontrolled release of formation fluids to atmosphere or subsurface layers, throughout the life cycle of a well. It applies to exploration wells, production wells, injection wells, shut-in wells and temporarily abandoned wells. This integrity cycle is illustrated in Figure 2.1.

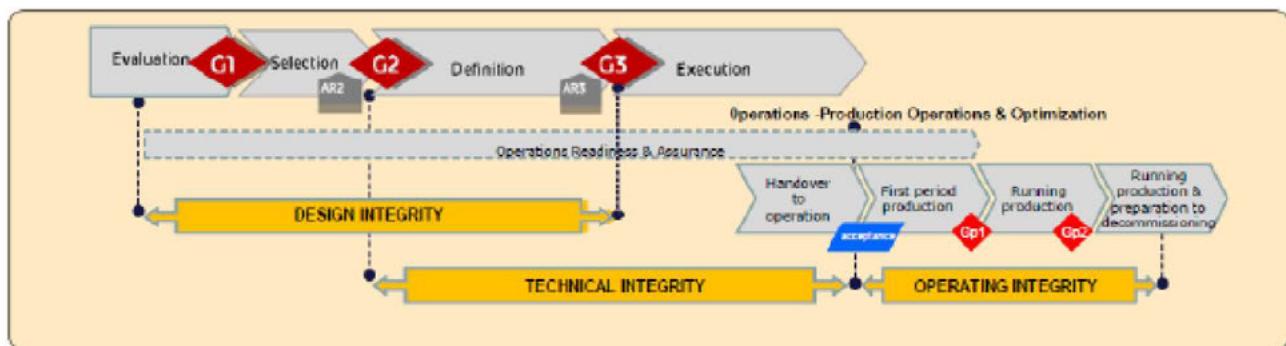


Figure 2.1: Asset Integrity Cycle

2.1.3 Well Integrity Management System

Eni Well Integrity Management Procedure (STAP-P-1-MG-26526), details the management of well integrity during the life cycle of a well. It provides guidance in the following areas;

- Roles and Responsibilities for Well Integrity Management.
- Handover Process.
- Well Integrity Management during Production Operations.
- Well integrity in well abandoning.
- Annulus pressure monitoring frequency.
- Management of wells with sustained casing pressure.
- Well Maintenance Activities.
- Reporting & Data Collection.
- Well integrity tool (WIT).

The management of well integrity starts with well design, continues through well construction, and is constantly assessed during the production phase.

When a well exhibits sustained casing pressure (SCP), a management of well integrity shall be activated. The risks posed by such an anomaly shall be assessed and addressed. A Risk Assessment shall be carried out based on the requirements stated in the Eni's "HSE Risk Management and Reporting" and "Guideline to Assess Blowout Probability Study During Drilling and Completion Operations" (STAP P-1-M-26506), by both the P&M function and D&C function, according to the appropriate area of competence. P&M function manages well maintenance (refer to the Eni's "Well Maintenance Procedure", STAP-P-1-MG-26527).

 eni australia	Company document identification	Owner document identification EX-DE	Rev. index.	Sheet of sheets
	000036_DV_PR.D&C.0883.000		Validity Status	
			Rev. No.	23 / 38

2.1.4 Management of Wells with Sustained Casing Pressure

ENI Well Integrity Management Procedure STAP-P-1-MG-26526 - rev.04, defines Observed Casing Pressure and Sustained Casing Pressure as follows:

- Observed Casing Pressure (OCP) is defined as any pressure measurable at the wellhead, of a casing annulus higher than 10 bar (150psi).
- Sustained Casing Pressure (SCP) is defined as any OCP that rebuilds to at least the same pressure level when bled down; it shall not be caused solely by temperature fluctuations, and shall not be a pressure that has been imposed by the Operator.

Eni has established specific tasks to manage wells with Sustained Casing Pressure (SCP), in compliance with international regulations and standards relevant to safe operations of oil, gas and condensate fields.

The following tasks are assigned to, and shall be performed by, the P&M function and D&C function:

- Production & Maintenance function.
 - Well Maintenance
 - Pressure monitoring (SCP).
 - Verify if OCP is lower than MAWOP
 - Controlled bleed-down on "B", "C", etc. annuli (when possible).
 - Routine monitoring of any SCP.
 - Reporting and database keeping.
- Drilling and completion function.
 - Calculation of the Maximum Allowable Annulus Surface Pressure (MAASP).
 - Calculation of the Maximum Allowable Wellhead Operating Pressure (MAWOP).
 - Define the operating annuli pressures envelope (considering minimum pressure to avoid vacuum and maximum pressure to avoid reaching MAWOP within the actual required bleeding time), as per "Well Site Handover STAP-P-1-MG-26526 - rev.04, page 29 of 59, Procedure Between Drilling and Completion Function and Production Function" (STAP P-1-MG-26529).
 - Definition of possible causes of SCP;
 - Remedial actions in SCP wells:
 - Well intervention (if managed by D&C function).
 - Workover Operations (WO).
 - Well Abandonment;
 - Reporting and database keeping .

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.		Sheet of sheets
			Validity Status	Rev. No.	
			EX-DE	01	

2.2 Responsibilities

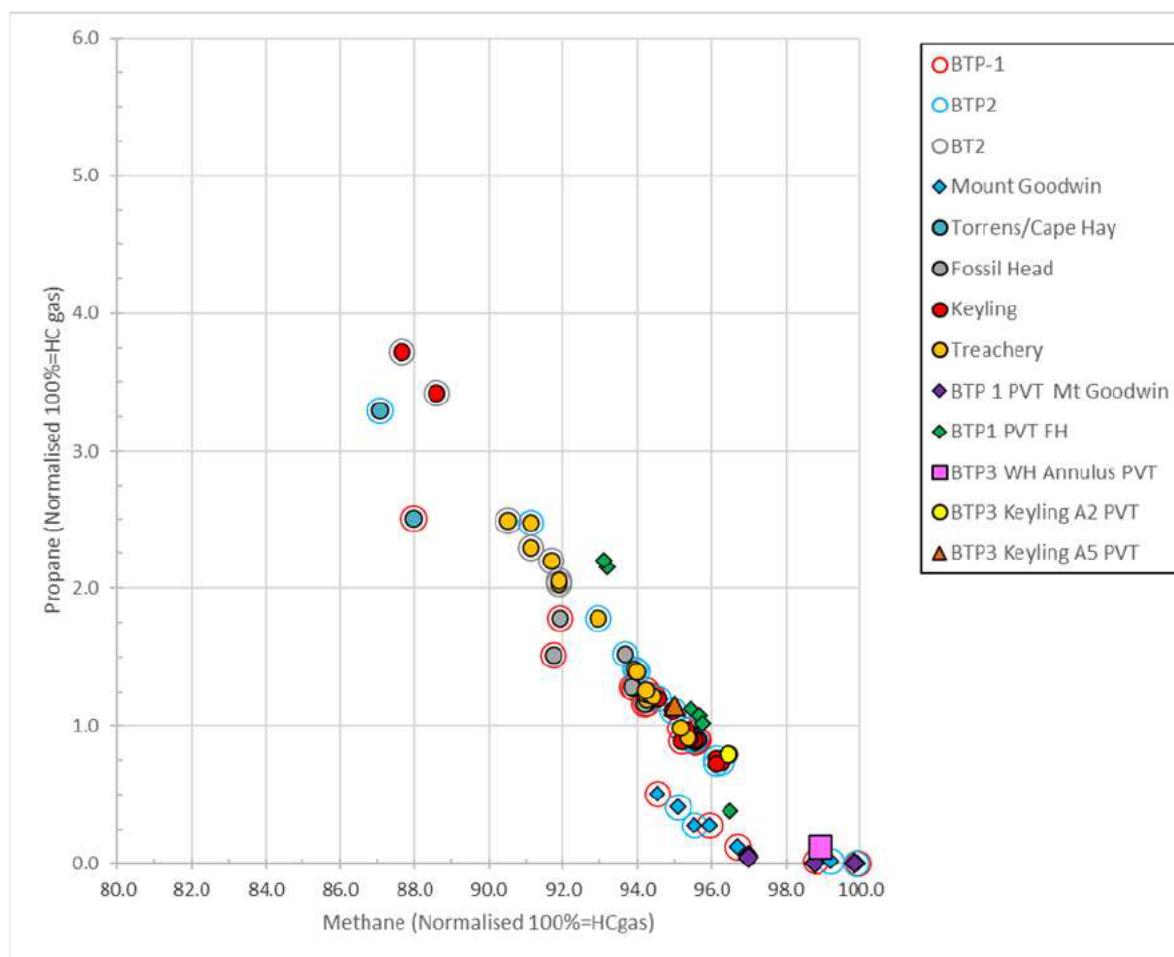
2.2.1 Organisational Structure and Tasks

Roles and responsibilities and authorities of key personnel and position(s) responsible for the integrity of the well during its life cycle, are detailed in STAP-P-1-MG-26526.

2.2.2 Personnel Responsibilities

The responsibilities of the relevant managers are described as below.

- Business Unit Managing Director - The Subsidiary Manager is responsible for ensuring that the organisation and tools to support the well site handover process are properly developed and maintained.
- Operations Manager - The Operations Manager is the single point of contact accountable for ensuring that all the requirements of the Well Integrity Management Procedure and the referenced procedures and reporting requirements are complied with. In the case that current operating practices fail to meet such requirements, the Operations Manager is responsible for putting in place a remedial compliance plan. The Operations manager shall validate on a quarterly basis well integrity data and parameters contained in WIT software.
- Production & Maintenance Function (P&M) - The Manager of Production & Maintenance Function, directly reporting to the Operations Manager, responsible for all aspects aimed to guarantee the integrity of the wells, including gathering of annuli pressures, X-mas tree and SCSSV periodical tests. Responsible for the acceptance of wells transferred from the Well Operations Function, to enable a safe, smooth start-up leading to fully sustainable production operations. The Production and maintenance function shall ensure that appropriate processes and procedures are in place and implemented to perform the handover to the Well Operations Function. In case of loss of well integrity, Production and maintenance function shall involve drilling and completion function for analysis and possible remedial actions.
- Drilling and Completion function (D&C) - The Drilling and completions function is responsible to transfer to P&M function, throughout the handover process, all the well data and relevant information required for proper well handling and well integrity management. Upon identification of well integrity shortfall or notification by the P&M function of well integrity anomalies, the D&C function is responsible to identify specialist expertise and develop appropriate operating procedures to fully assess and resume well integrity as needed. Moreover, D&C function shall:
 - in cooperation with the P&M function prepare a well intervention schedule and budget aimed to restore well integrity.
 - in cooperation with P&M function verify that well integrity requirements meet local Authority regulations.
 - D&C function, duly activated by Production & Maintenance function, is responsible for undertaking remedial actions to restore well integrity.
 - guarantee the control and the periodical updating of relevant data required by the WIT software.


 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.		Sheet of sheets
			Validity Status	Rev. No.	
			EX-DE	01	25 / 38

2.3 Diagnostics

Four diagnostic tests have been undertaken to identify the source of the gas, confirm the leak path, measure the leak rate, and measure the liquid level in the annulus.

2.3.1 Gas Sample Fingerprinting

The gas from the 20" x 13-5/8" casing annulus was sampled in March 2023 and sent to Core Lab for gas chromatography finger printing. These results were compared to the results from the varying reservoir levels in the Blacktip development. The very high Methane content of 99% (normalised for HCgas) is consistent with Mount Goodwin gas, with the Keyling/Treachery reservoirs having much lower Methane percentages of 90 to 96 percent.

Figure 2.2: Gas Fingerprinting Plot

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.	Sheet of sheets
			Validity Status	

EX-DE

01

26 / 38

2.3.3 Archer VIVID Logging – Leak Detection

The VIVID Seal logging string is designed to detect the smallest of fluid movements downhole. High-speed sampling allows statistical parameter analysis over a broad frequency range, with greater resolution at low frequencies. The tool can measure cement sealing quality, gauge flows, even in the presence of cement micro-annuli and locate minimal flow levels through a cement barrier.

The tool was run in hole through the production tubing, with the well shut in. A baseline pass was completed with the annulus shut in with 680 psi at surface. The 2nd leak detection pass was completed with the annulus periodically bled down from 680 psi to 400 psi and allowed to build up. The pressure build-up rate was consistent throughout the diagnostic logging at 300 psi/hr.

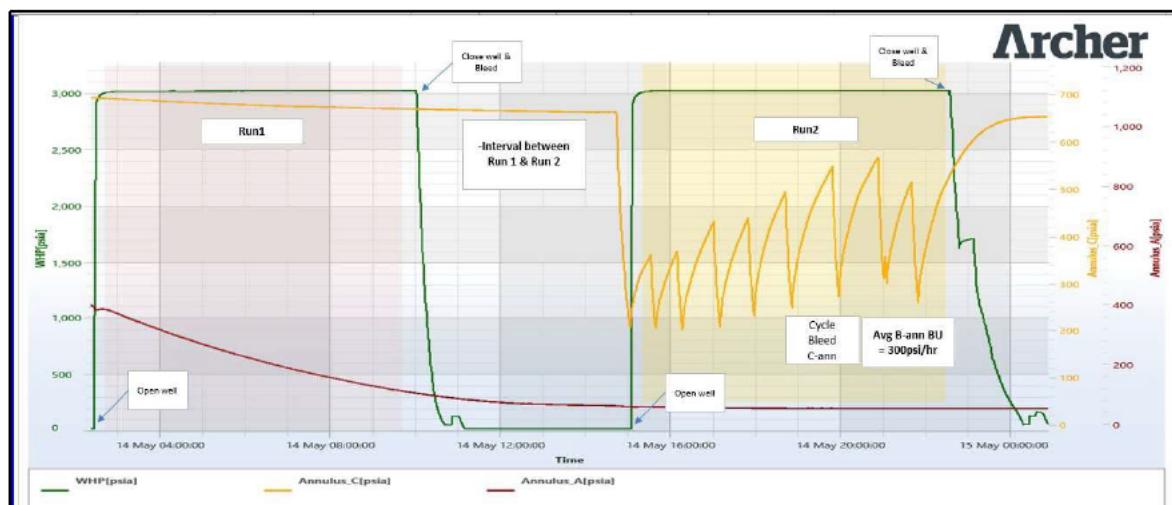


Figure 2.3: Surface Graph While VIVID Logging

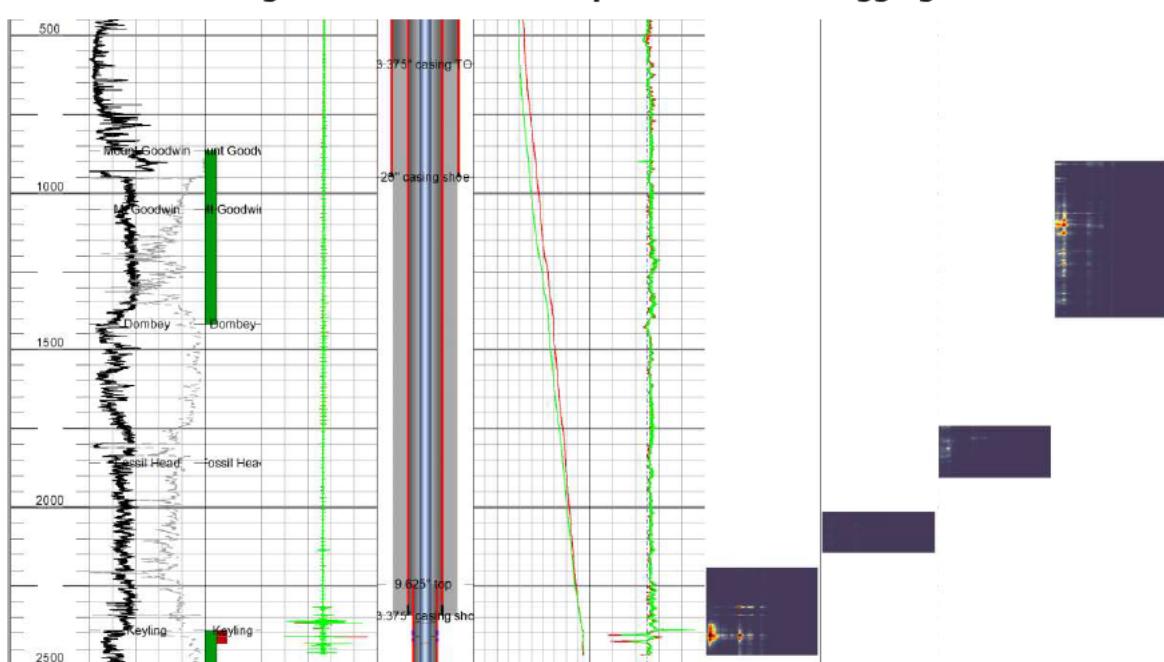
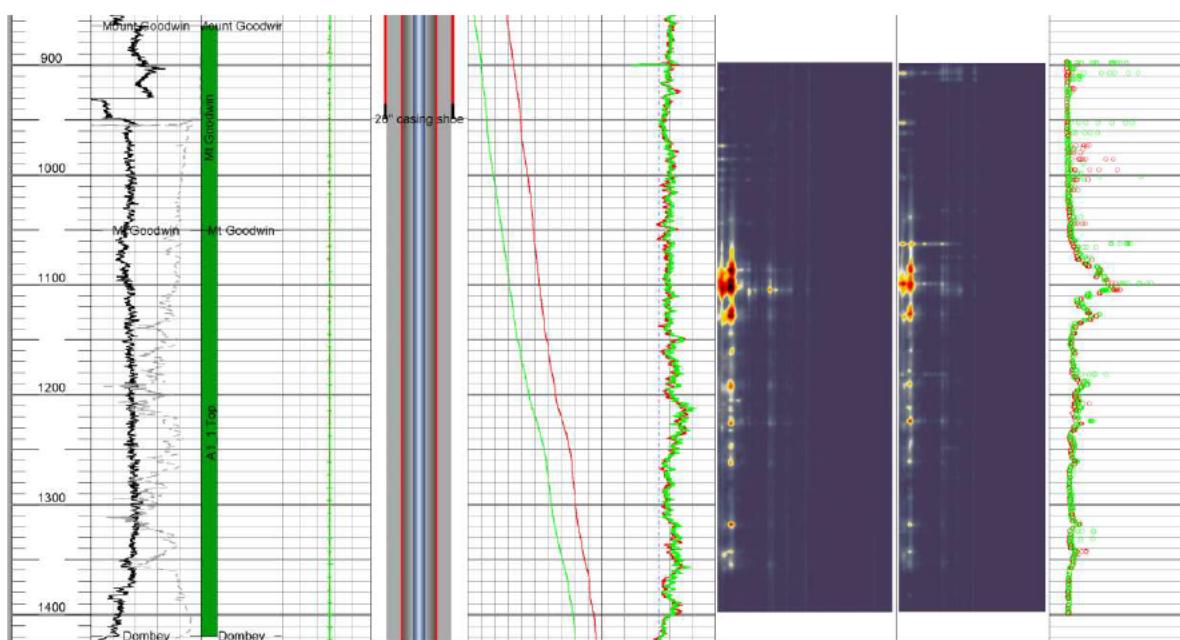



Figure 2.4: VIVID Full Log Results

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.		Sheet of sheets 27 / 38
			Validity Status	Rev. No.	
			EX-DE	01	

The log confirmed the integrity of the cement above the primary Keyling A2 reservoir, with no acoustic anomalies recorded in the cement above the primary reservoir. The VIVID tool recorded notable acoustic events across the primary reservoir area, which is interpreted as cross flow between reservoir layers with the well shut in.

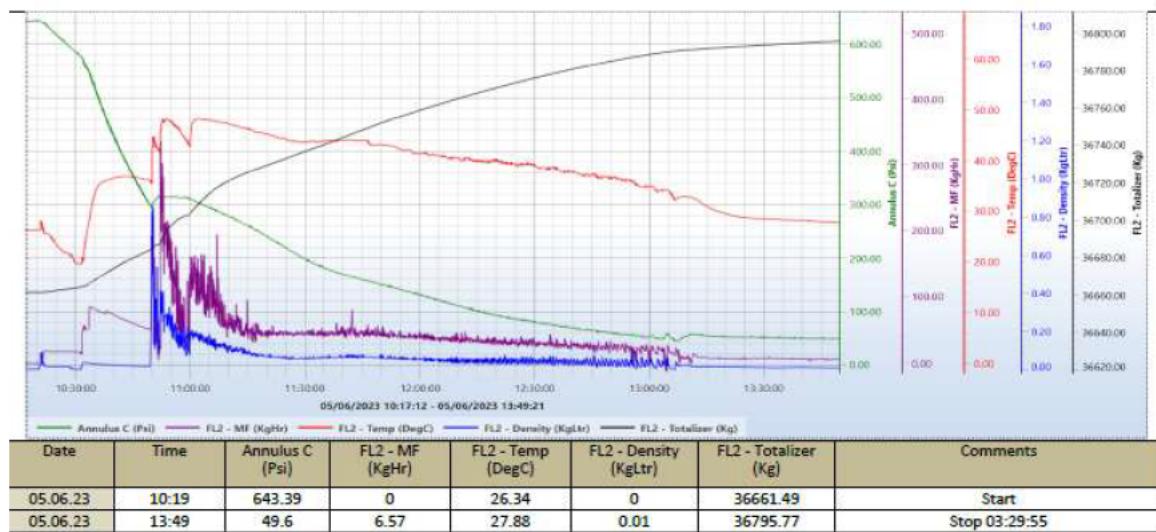
The log data shows an acoustic energy increase across formation units A1_1-A1_10 (interval 1,050 m-1,300 m) during both well conditions. The well was shut-in for 6 hours before the static survey was carried out, resulting in the changing 20" x 13-5/8" casing annulus pressure. The formation fluid can migrate between the rock layers during the shut-in period due to formation pressure differences, lateral flow, and presence of fracture/faults. The most prominent acoustic energy changes were observed within zones A1_1 - A1_5 (1,050 m-1,145 m), indicating the majority of the flow originates from this interval. The acoustic response appears to be intensified across this interval during the venting condition. Acoustic anomalies at the depths of 906 m, 951 m and 1,012 m are suggestive of a further annular gas migration path to surface. Acoustic events are also found across layers A1_6 and Tern formation (1,150 m-1,300 m) demonstrating the annular gas flow across these zones.

Figure 2.5: Mount Goodwin VIVID Log Results

The survey data shows a clear indication of annular gas flow across subgroup layers of Mt Goodwin formation within the interval 1,050 m-1,300 m. The gas flow and its annular migration from these zones to the surface, appear to be the main source of SCP on the 20" x 13-5/8" casing annulus.

The relatively slow build-up of pressure is indicative of a casing micro annulus allowing small volumes of gas to migrate through the cement up to a point where the overbalance prevents further migration.

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.	Sheet of sheets
			Validity Status	
			Rev. No.	28 / 38


2.3.4 Leak rate and Annulus fluid level

A ScanWell annulus flow measurement tool was used to measure the gas leak rate, pressure build up and an acoustic metering survey carried out to determine the annulus fluid level.

Table 2.2: Well Operation Sequence

05.06.23	10:10	Record initial pressure
05.06.23	10:11	Acoustic measurements
05.06.23	10:19	Start bleed down
05.06.23	13:49	End bleed down
05.06.23	13:50	Start leak metering
05.06.23	14:50	End leak metering
05.06.23	14:53	Start pressure build-up
05.06.23	15:01	Acoustic measurements
05.06.23	15:23	End pressure build-up
06.06.23	08:33	Acoustic measurements

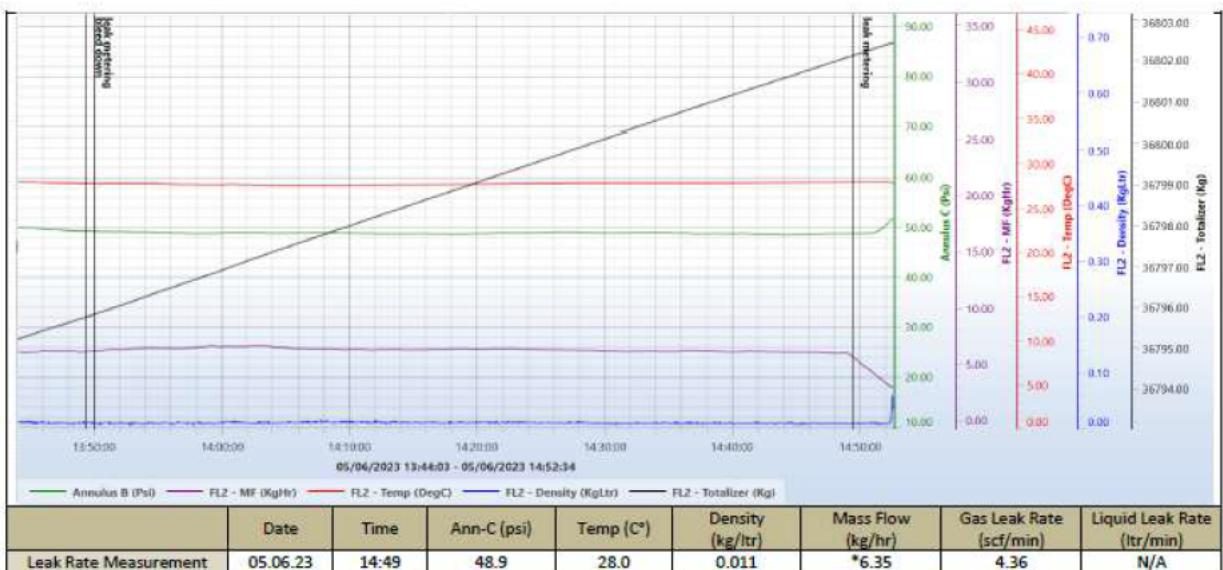
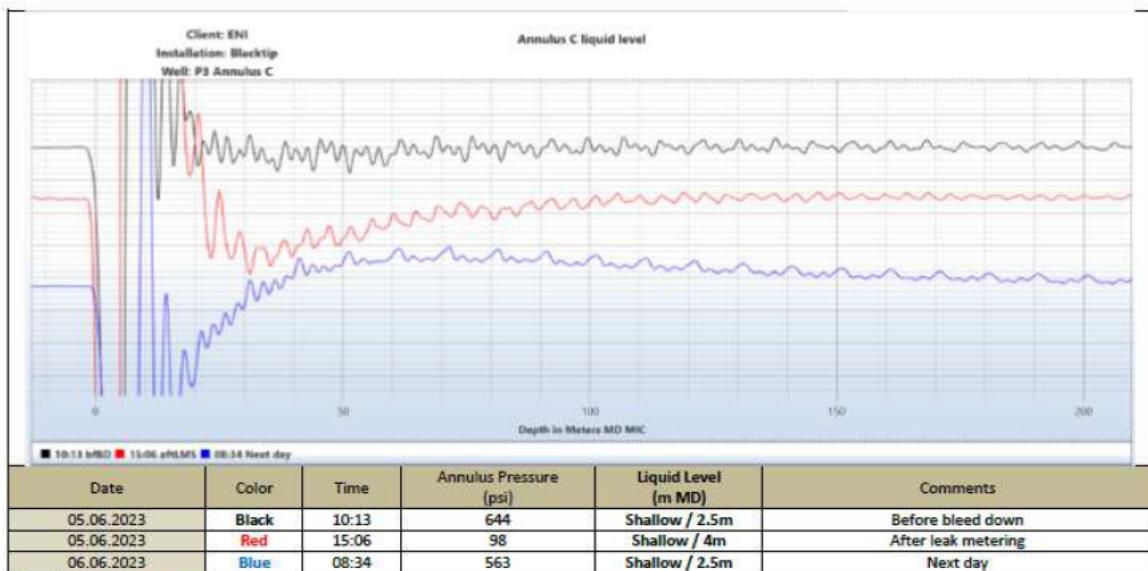

The ScanWell leak metering survey was attached to the 20" x 13-5/8" casing annulus while the P3 well was producing. The A-annulus (tubing x 13-5/8" casing) pressure was allowed to increase to approx. 2,100 psi via thermal expansion.

Figure 2.6: Initial Bleed Off Results


The initial gas cap was bled down from 643 psi to 296 psi before a mix of gas and liquid was noted at surface. In order to stabilise the flow rate, the pressure was reduced to 49 psi before commencing the leak rate measurement survey. The initial bleed off resulted in 134 kg of gas/fluid mix, predominantly gas.

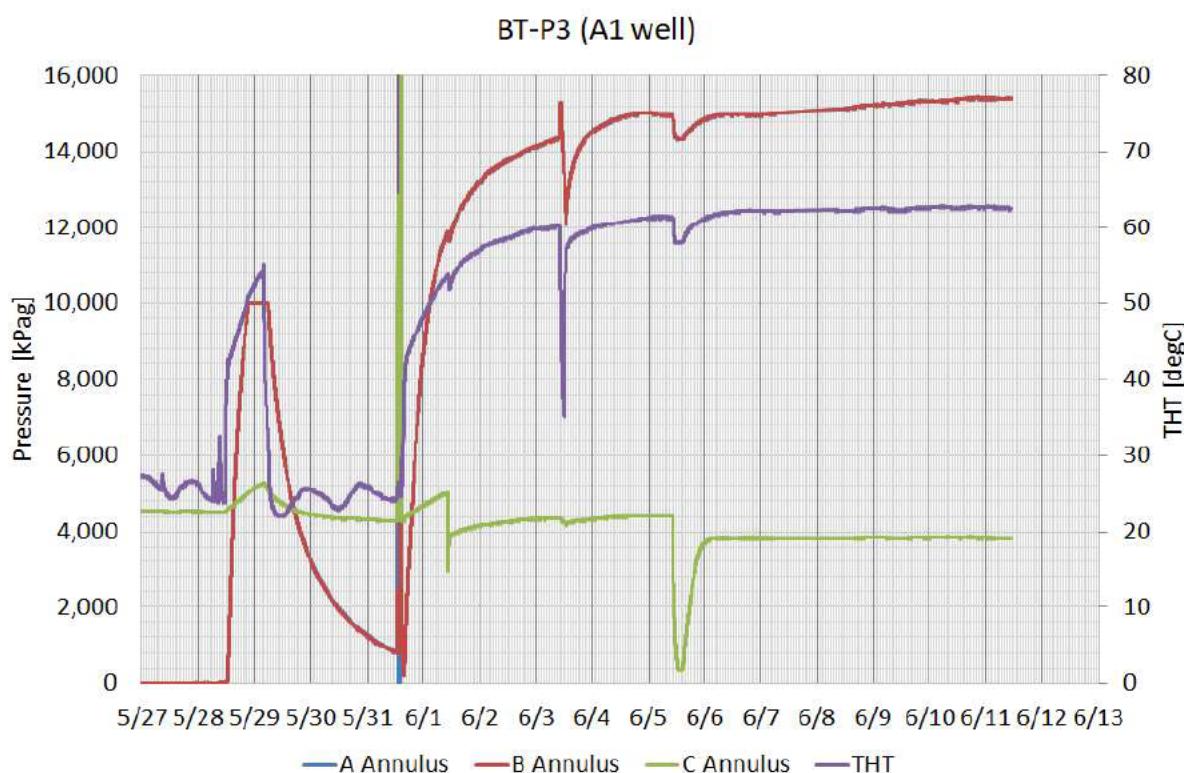
 eni australia	Company document identification			Owner document identification Rev. index. Validity Status Rev. No. EX-DE 01	Sheet of sheets 29 / 38
Rev. index.	Validity Status	Rev. No.			

Figure 2.7: Leak Flowrate Results

The leak measurement survey was conducted with the well in production and the 20" x 13-5/8" casing annulus open. The pressure, temperature and flowrate remained stable for the 1 hr measurement period. The measured flowrate was 6.35 kg/hr, which equates to 4.36 scf/min.

Acoustic measurements comments:

- The acoustic trace indicates a shallow liquid level. Time between the reflections is equivalent to the depth in the table above.


Figure 2.8: Annulus Fluid Level

The fluid level was measured acoustically before the bleed down, after the leak monitoring survey, and 24 hours following the survey. The fluid level was found to be between 2.5 m and 4 m below the wellhead in all instances. This gives greater certainty that the leak is one way, with gas able to migrate up through the cement micro annulus, but fluid not being able to leak off through the cement to the formation.

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.	Sheet of sheets
			Validity Status	
			EX-DE	30 / 38

2.3.5 20" x 13-5/8" annulus Pressure Build-Up During Production

The annulus pressures before, during and following the ScanWell survey are graphed below. The well was brought on production on 1st June, with the A-annulus pressure increasing from 60 psi to 2,150 psi through thermal expansion of the A-annulus fluid. During the initial flow period, the 20" x 13-5/8" casing annulus pressure increased to 725 psi through a combination of thermal effects and expansion of the inner 13-5/8" casing. The pressure was bled down to 350 psi, the pressure then increased and stabilised at 635 psi prior to commencing the ScanWell survey. Following the ScanWell survey, the 20" x 13-5/8" casing annulus was shut in and stabilised at a pressure of 575 psi. The pressure then remained stable for the following 5 days.

Figure 2.9: Annulus Pressures During and Following ScanWell Survey

2.3.6 Diagnostic Conclusions

The results from the 4-diagnostic tests confirm the pressure observed in the 20" x 13-5/8" casing annulus is due to gas migration from the Mount Goodwin formation. The relatively slow build-up of pressure and very low flow rate is indicative of a casing cement micro annulus, allowing small volumes of gas to migrate through the cement up to a point where the overbalance prevents further migration. When bled off the pressure drops off quickly with a minimal sustained flow rate of only 4.36 scf/min which is below the API 14A acceptable leak rate for a down hole TRSV with a safety factor of 3. The 20" x 13-5/8" casing annulus pressure stabilises at 575 psi when thermal expansion effects are eliminated. The fluid level in the annulus is stable at between 2.5 m and 4 m below the wellhead. The leak can be assumed with a high degree of confidence to be one way, with gas able to migrate up through the cement micro annulus but fluid unable to leak off to the formation below the shoe.

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.		Sheet of sheets
			Validity Status	Rev. No.	
			EX-DE	01	31 / 38

2.4 Documentation and Record Keeping

Eni have a specific software named Well Integrity Tool (WIT) that has been developed to support well integrity during all phases on the well lifecycle. The monitoring is performed locally and by HQ D&C function.

2.4.1 Well Integrity Tool (WIT)

WIT uses collected data to provide a comprehensive overview of the current integrity status by mapping the integrity status of the Company's worldwide wells.

This tool is available via the Internet at the URL wellintegrity.Eni.com, and Eni Intranet (via T/S portal). Any Eni employee (Drilling, Completion, Production a Maintenance Engineers, along with relevant Managers) can access the application, for the wells of his / her competence, providing he / she has an ENINET ID.

The tool based on a "traffic light" logic working just on the three main aspects of the well integrity: the Downhole Safety Valve status, the Wellhead and Christmas Tree status and the tubing-casing and casing-casing Annuli status.

By simply periodically updating the data about the tests and monitoring performed onto these 3 items, the tool provides the status of each one of the 3 and the whole condition of the well, given by the worst status of each single barrier element.

In this logic, "green" means that the status is ok and there are no issues (the barriers are effective, tested and maintained); "yellow" means that the status of the barriers is still ok (they are still effective), but there is an alert due to test date being expiring or any minor anomaly on annulus pressures or other particular reasons for alert; "red" means that there is an alarm due to one or more barrier(s) being lost or data completely missing.

WIT is composed by two different sections:

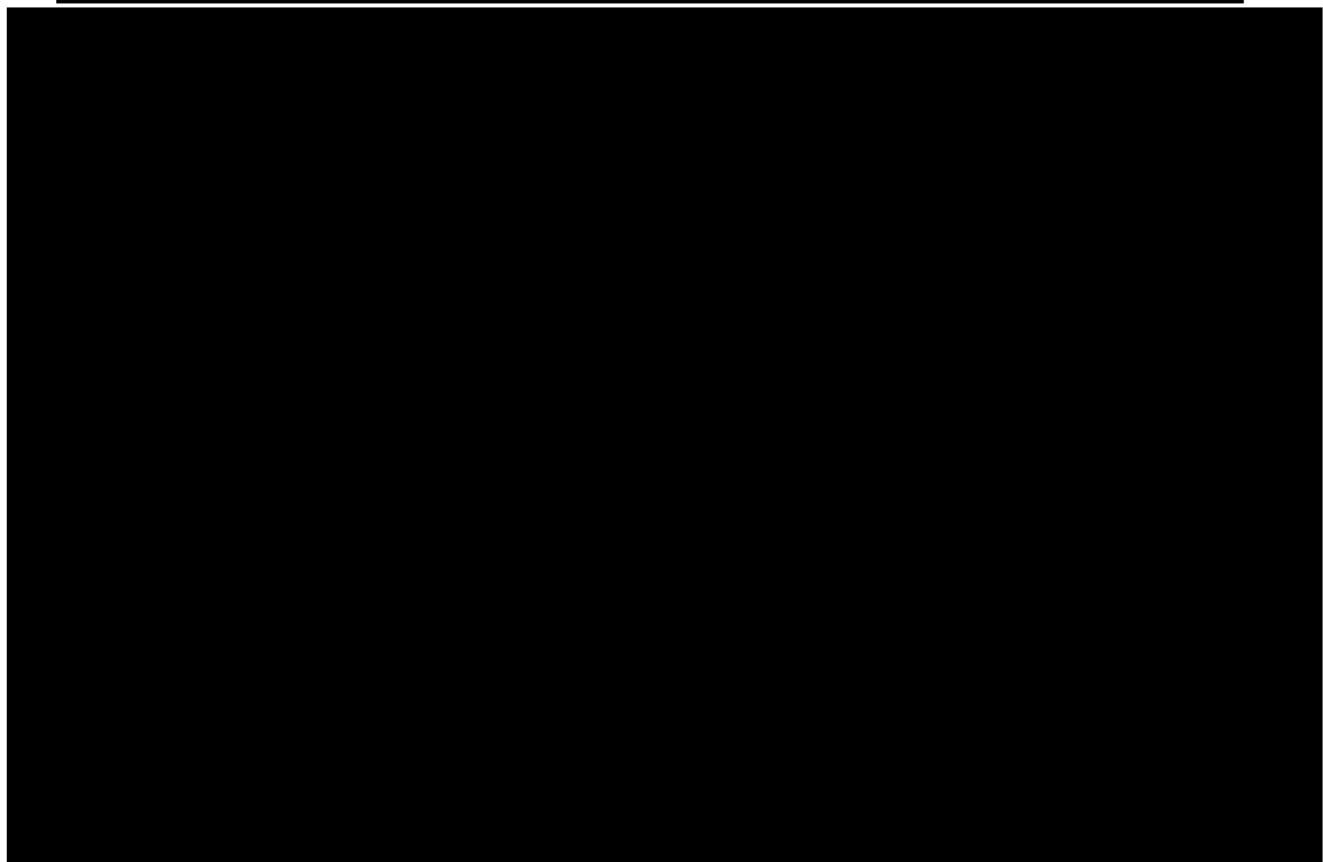
- WIT - Input Tool
- WIT - Dashboard Analysis 11

The Input Tool collects the necessary data for mapping the safety conditions of all wells. The Dashboard Analysis can be used for a qualitative analysis on wells integrity condition.

This dashboard analyses shows an Alarm Status according to the Eni procedures stated in "Well Integrity Management Procedure", STAP P-1-MG-26526 and in the "Well Maintenance Procedure", STAP-P-1-MG-26527.

Each single alarm has three levels, GREEN light: for wells where there are no integrity problems. YELLOW light: state of alert; for wells where there are some anomalies to be investigated or monitored. RED light: state of alarm; for wells where critical conditions require immediate action. The worst value (light) of single alarms determines the general status of the well.

 eni australia	Company document identification	Owner document identification REV. INDEX Validity Status REV. NO. EX-DE	Sheet of sheets
	000036_DV_PR.D&C.0883.000		
			32 / 38


2.5 MAASP & MAWOP

Due to the nature of the 20" x 13-5/8" annulus sustained casing pressure, the Maximum Allowable Annulus Surface Pressure and Maximum Allowable Wellhead Operating Pressure for Blacktip P3 do not conform exactly to the API 90.1 standards, primarily due to the one-way nature of the leak path in the cement sheath. Gas can migrate up through the micro annulus in the cement sheath, but fluid does not appear to leak off to the formation below the 20" casing shoe.

The MAWOP is calculated based on the best equivalent hydrostatic head inside the microannulus, the fracture pressure below the shoe, the hydrostatic pressure above the TTOC and the surface annulus pressure read.

The MAASP set at the minimum internal 13-5/8" casing collapse pressure of 2,415 psi.

The MAWOP pressure is calculated based on a 20" shoe formation strength of 1.6 sq. with the micro annulus assumed to be [REDACTED]

Figure 2.10: Steady State and MAWOP Pressures

¹ Based on the MDT data, the reservoir gas gradient in Mount Goodwin is 0.018-0.046psi/ft.

 eni australia	Company document identification		Owner document identification EX-DE	Rev. index.	Sheet of sheets
	Validity Status	Rev. No.			
				01	33 / 38

The likelihood of reaching or breaching the MAASP is negligible as the formation pressure in the Mouth Goodwin is 1,432 psi and during well start up, the thermal expansion effects have been limited to approximately 150 psi.

Table 2.3: MASSP & MAWOP Calculations

Case	Element	MAASP psi	MAWOP psi	Comments
Inner Casing Collapse	13-5/8"	3,772	3,018	20" x 13-5/8" casing annulus hydrostatic 208 psi greater than the A-annulus hydrostatic at the 20" shoe depth.
Inner Casing Collapse (A-Annulus evacuation case)	13-5/8"	2,415	1932	Assumption being the A-annulus fluid drops to below the 20" casing shoe depth due to a packer failure.
Outer Casing Burst	20"	3,060	2,448	
WH/XT Rating (B Annulus Elements)	13-5/8"-20"	5,000	4,000	S Seals on UH bottom prep top and bottom S Seal test at 1,200 psi/5 min.
Formation Strength	20" shoe			

MAASP 20" x 13-5/8" Annulus	2415	psi	Assumption being the A-annulus fluid drops to below the 20" casing shoe depth due to a packer failure.
MAWOP 20" x 13-5/8" Annulus		psi	Limited by the 20" shoe Formation Strength

 eni australis	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.		Sheet of sheets
			Validity Status	Rev. No.	
			EX-DE	01	34 / 38

2.6 Well Operations Considerations

2.6.1 Monitoring Method and Frequency

All blacktip wells tubing heads, A-annulus, 20" x 13-5/8" casing annulus, and 30" x 20" casing annulus pressures, are continuously monitored via pressure sensors on the wellhead and annulus outlets. Data is continuously transmitted via the DCS to the Production Operator in the Central Control Room at the Yelcherr Gas Plant. Alarms are set for each annulus which will activate in the event of an increase outside normal limits.

Table 2.4: Blacktip Annulus Alarm Levels (PSI)

Well	A annulus	B annulus	C annulus
P1	650	800	540
P2	650	800	540
P3	2,670	N/A	780

2.6.2 Additional monitoring considerations for Blacktip P-3

Continuous monitoring of the 20" x 13-5/8" casing annulus pressure would ordinarily require the inner annulus outlet valve to be left open. The outlet is exposed to dropped object risks which could result in a loss of containment. A pressure monitoring VR plug technology is available from Interwell, via their PTC subsidiary. The Master Surface Annulus Safety Valve (MSAS®), fail-safe close barrier valve solution, provides independent double barrier integrity at wellhead side outlets. The MSAS mitigates the risk of uncontrolled release of annular content from leaks or accidents, including dropped objects. The system will incorporate their VR Sense VR plug design.

The VR Sense system consists of the VR Sense plug, VR Sense flange and VR Sense connection box. The VR Sense plug is installed in the wellhead's VR profile. The VR Sense plug is the primary barrier and functions as a blind plug with a sensor, which measures pressure and temperature in the annulus cavity.

Figure 2.11: Interwell MSAS & VR Sense

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index.		Sheet of sheets
			Validity Status	Rev. No.	
			EX-DE	01	35 / 38

The MSAS provides an additional independent barrier in the wellhead VR profile. The MSAS is hydraulically operated and connected to the ESD. Should an impact or collision take place, the API6FD/FB fire tested barrier valve locked in the tailor-designed spacer spool, will close and remain within the wellhead, thus securing the pressurised annular volume. The MSAS system can also be integrated in an API gate valve (MSAS-G) and has a smaller footprint as the valve actuator is installed within the gate valve bore.

2.6.3 Corrosion/Erosion Management Considerations

The 20" x 13-5/8" casing annulus fluid level has been measured to be between 3 m and 5 m below the wellhead level. During the wells production life, the annulus level will vary, dependant on the temperature and pressure in the annulus. This variation will introduce a corrosion risk that will be managed with periodic inspections.

Both internal and external corrosion measuring techniques are being assessed. The Baker MID (Magnetic Imaging Defectoscope) tool is being assessed for periodic internal logging of the 13-5/8" and 20" casing. The tool can evaluate quantitatively the casing metal loss of up to 3 casing strings and qualitatively for the 4th casing string. Similar logging technologies are also available and can be deployed to investigate the casing metal loss.


Through periodic logging, a timelapse metal loss measurement can be developed to ensure the barrier envelope design pressures can be updated and mitigations implemented of corrosion is measured.

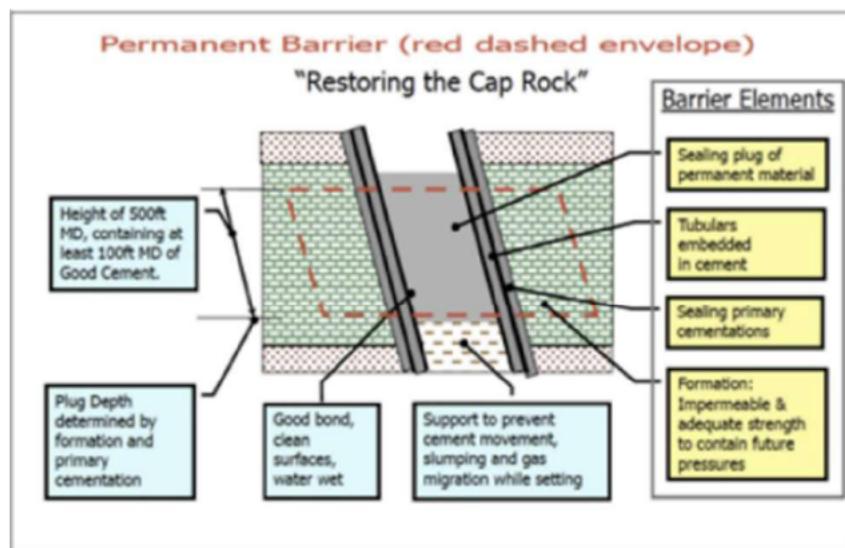
Magnetic Imaging Defectoscope – S4

Tool specifications

- Operates in all normal well bore fluids
- Operates in deviated or horizontal wells with centralizers
- Logging in SRO mode on mono-conductor wireline
- Tool maximum OD – 1.65" (42mm)

Instrument length	Weight	Max pressure	Max temperature	Barriers	
144" (3672mm) includes centralizers	14kg includes centralizers	15000 psi (100 MPa)	302°F (150°C)	4	
Min ID	Max ID	1 pipe WT	2 pipes WT	3 pipes WT	4 barrier
2.5"	20"	Max 0.629"	Max 1.259"	Max 1.889"	Max 1.9"
Accuracy		5%	10%	15%	20%
Min length of "crack"		1/9 of perimeter	1/4 of perimeter	1/3 of perimeter	1/2 of perimeter

Figure 2.12: Baker MID Tool Specifications


 <i>en i</i> australi a	Company document identification 000036_DV_PR.D&C.0883.000	Owner document identification	Rev. index		Sheet of sheets
			Validity Status	Rev. No.	
			EX-DE	01	36 / 38

2.6.4 Well Abandonment considerations.

Blacktip P3 will be abandoned when the field is decommissioned. The well will be plugged and abandoned in line with ENI abandonment policies, which are aligned with international standards of OGUK and NORSO K.

The isolation of the Mount Goodwin formation will require 2 x permanent barriers to be placed across the cap rock. The micro annulus in the cement behind the 13-5/8" casing will therefore require remediation to ensure a minimum of 60 m of sealing cement is placed across the cap rock.

Technologies currently available to remediate the micro annulus include section milling, perf wash and cement (PWC) and resin squeezes. Emerging and new technologies will also be assessed at the time of the abandonment planning.

Figure 2.13: UKOG Restoring Cap Rock Diagram

 eni australia	Company document identification 000036_DV_PR.D&C.0883.000				Owner document identification <div style="display: flex; justify-content: space-between;"> Rev. index. Validity Status Rev. No. </div>	Sheet of sheets
						37 / 38
						EX-DE 01

3. RISK ASSESSMENT

ID #	Activity	Applicability	Hazard	Consequence	Risk			Existing Prevention or Mitigation Controls	Risk			
					Severity	Prob	Risk Rating		Severity	Prob	Risk Rating	
No	Risk	Personnel, Environment, Damage Schedule	Risk description	Risk Impacts	Original risk			Prevention – prevent hazard event occurring & reduce the likelihood of event. Mitigation – reduces the consequence.	Mitigated risk			
20" x 13 5/8" annulus Pressure												
1	P3 Production with 20"x13 5/8" annulus micro annulus and sustained casing pressure	People H&S	Annulus pressure exceeds MAASP during unmanned production activities	1. Breakdown of formation at the 20" shoe leading to a loss of containment at seabed 2. P3 Production temporary Shut down	1	C	Low	Preventative Measures 1. TTOC inside 20"x13 5/8" annulus is 644m which is 305m inside 20" shoe. 2. ScanWell leak and fluid level surveys confirmed leak is one way with gas able to migrate up through the cement micro annulus but fluid unable to leak off to the formation. 3. Annulus pressure is continuously monitored in the Yelchem gas plant control room. 4. 20"x13 5/8" annulus pressure alarms automatically trigger if MAWOP is exceeded (Note: the alarm is set at 780psi, while MAWOP is 1,159psi). 5. Mount Goodwin reservoir pressure is 1432psi which would require almost full evacuation to gas to breach the MAWOP pressure (Note: MAWOP is re-calculated based on the post-Drill PPFG chart provided by Eni HQ).	1	A	Low	
		Environment			2	C	Low		2	A	Low	
		Cost/ Business Loss			2	C	Medium	Mitigating Controls 1. Well services team mobilised to WHP within 24hrs to investigate and bleed down annulus pressure when the alarm limit of 780 psi was reached. 2. 20" shoe is set in the sealing cap rock limiting the possibility of breakdown and migration to shallow formations and seabed. 3. The leak rate is 4,55 scf/min , this is a 1/3rd of the allowable leak rate for a TRSSV as per API14a	2	A	Low	
		Corporate Image			2	C	Medium		2	A	Low	
2	P3 Production with 20"x13 5/8" annulus micro annulus and sustained casing pressure	People H&S	Annulus pressure exceeds MAASP during unmanned production activities	1. 13 5/8" casing collapse 2. Damage to production tubing and loss of primary barrier envelope. 3. 20" casing exposed to THP gas to surface 4. Loss of containment,	1	B	Low	Preventative Measures 1. Annulus pressure is continuously monitored in the Yelchem gas plant control room. 2. 20"x13 5/8" annulus pressure alarms automatically trigger if MAWOP is exceeded. (Note: the alarm is set at 780psi, while MAWOP is 1,159psi). 3. Collapse pressure is 1500 psi above the Mount Goodwin gas to surface pressure which is the maximum feasible surface pressure (Worst Case 13 5/8" casing collapse pressure is based on a simultaneous production packer failure and the highest gas pressure in the 20"x13 5/8" annulus). 4. Full evacuation to gas prevented as TTOC inside 20"x13 5/8" annulus is 644m which is 305m inside 20" shoe, ScanWell leak and fluid level surveys confirmed leak is one way with gas able to migrate up through the cement micro annulus but fluid unable to leak off to the formation.	1	A	Low	
		Environment			3	B	Medium		3	A	Low	
		Cost/ Business Loss			3	C	Medium High	Mitigating Controls 1. Well services team is mobilised to WHP within 24hrs to investigate and bleed down annulus pressure when the alarm limit of 780 psi is reached 2. 20" Casing and wellhead rated to a minimum pressure of 3060 psi (20" casing burst) which is above the maximum expected pressure at surface, For 20" casing exposed to the pressure, the tubing string shall leak in combination with the 13 5/8" casing collapse,	3	A	Low	
		Corporate Image			3	C	Medium High		3	A	Low	
3	P3 Production with 20"x13 5/8" annulus micro annulus and sustained casing pressure	People H&S	20"x13 5/8" annulus casing corrosion leading to failure of 20" or 13 5/8" casing.	1. 20" casing burst immediately below the wellhead. 2. 13 5/8" casing collapse 3. 20" casing exposed to Annulus pressure 4. Loss of secondary barrier envelope.	1	B	Low	Preventative Measures 1. Annulus pressure is continuously monitored in the Yelchem gas plant control room. 2. 20"x13 5/8" annulus pressure alarms automatically trigger if a pressure lower than the MAWOP is exceeded. 3. Casing corrosion monitoring to be in place on an opportunistic basis. 3. Collapse pressure is 1500 psi above the Mount Goodwin gas to surface pressure which is the maximum feasible surface pressure (Worst Case 13 5/8" casing collapse pressure is based on a simultaneous production packer failure and the highest gas pressure in the 20"x13 5/8" annulus). 4. Full evacuation to gas prevented as TTOC inside 20"x13 5/8" annulus is 644m which is 305m inside 20" shoe, ScanWell leak and fluid level surveys confirmed leak is one way with gas able to migrate up through the cement micro annulus but fluid unable to leak off to the formation. 5. No CO2 or H2S is detected in the produced gas, therefore the corrosion risk is minimal.	1	A	Low	
		Environment			1	B	Low		1	A	Low	
		Cost/ Business Loss			3	C	Medium High	Mitigating Controls 1. Well services team is mobilised to WHP within 24hrs to investigate and bleed down annulus pressure when the alarm limit of 780 psi is reached 2. 20" Casing and wellhead rated to a minimum pressure of 3060 psi (20" casing burst) which is above the maximum expected reservoir pressure,	3	A	Low	
		Corporate Image			3	C	Medium High		3	A	Low	

 eni australia	Company document identification					Owner document identification	Rev. index.		Sheet of sheets		
	Validity Status		Rev. No.				EX-DE				
	000036_DV_PR.D&C.0883.000		01		38 / 38		38 / 38				

ID #	Activity	Applicability	Hazard	Consequence	Risk			Existing Prevention or Mitigation Controls	Risk			
					Severity	Prob	Risk Rating		Severity	Prob	Risk Rating	
No	Risk	Personnel, Environment, Damage Schedule	Risk description	Risk Impacts	Original risk			Mitigated risk				
4	P3 Production with 20"x13 5/8" annulus micro annulus and sustained casing pressure	People H&S	20"x13 5/8" annulus outlet valve failure during unmanned production activities	1. Loss of containment 2. Short duration jet fire release of gas followed by low level gas leak at approx. 4.55 scf/min Reservoir (primary and secondary barriers unaffected).	1	A	Low	Preventative Measures 1. Smart VR Plugs and MSAS to be installed on both outlets 2. Annulus pressure continuously monitored in the Yelcher gas plant control room. 3. 20"x13 5/8" annulus pressure alarm automatically trigger if MAWOP is exceeded. (Note: the alarm is set at 780psi, while MAWOP is 1,150psi). 4. TFMC UH4 Unihed outlet valve rated to 5000psi 5. Wellhead and HXT maintenance and testing schedule ensures barrier effectiveness. 6. Full evacuation to gas prevented as TTOC inside 20"x13 5/8" annulus is 644m which is 305m inside 20" shod. ScanWell leak and fluid level surveys confirmed leak is one way with gas able to migrate up through the cement micro annulus but fluid unable to leak off to the formation. Fluid level 5m below wellhead limiting gas volume	1	A	Low	
		Environment			1	A	Low		1	A	Low	
		Cost/ Business Loss			3	B	Medium		2	A	Low	
		Corporate Image			3	B	Medium		2	A	Low	
5	P3 Production with 20"x13 5/8" annulus micro annulus and sustained casing pressure	People H&S	20"x13 5/8" annulus outlet valve failure during manned WHP activities, Dropped object or incorrect maintenance procedures	1. Loss of containment 2. Short duration jet fire release of gas followed by low level gas leak at approx. 4.55 scf/min 3. Single Fatality (Reservoir primary and secondary barriers unaffected)	4	B	Medium High	Preventative Measures 1. Dropped object protection to be installed over 20"x13 5/8" annulus outlet during well services activities. 2. Two barriers in place, (Smart VR plug and MSAS installed on both outlets) 3. TFMC UH4 Unihed outlet valve rated to 5000psi 4. Wellhead and HXT maintenance and testing schedule ensures barrier effectiveness 5. Full evacuation to gas prevented as TTOC inside 20"x13 5/8" annulus is 644m which is 305m inside 20" shod. ScanWell leak and fluid level surveys confirmed leak is one way with gas able to migrate up through the cement micro annulus but fluid unable to leak off to the formation.	2	A	Low	
		Environment			1	B	Low		1	A	Low	
		Cost/ Business Loss			3	B	Medium		2	A	Low	
		Corporate Image			3	B	Medium		2	A	Low	
6	P3 Production with 20"x13 5/8" annulus micro annulus and sustained casing pressure	People H&S	Disconnection of communication between WHP and YGP/Perth for alarm/annulus pressure monitoring.	1. Loss of containment	1	C	Low	Preventative Measures 1. Primary system UPS 2. Backup independent communication system available from WHP to YGP.	1	A	Low	
		Environment			1	A	Low		1	A	Low	
		Cost/ Business Loss			1	B	Low		1	A	Low	
		Corporate Image			1	A	Low		1	A	Low	
7	P&A	Environment	Ineffective Rock to Rock permanent barrier	1. Hydrocarbon leakage to the environment	3	B	Medium	Mitigating Controls 1. Wells Shut in if all communications lost (ESD system) 2. Helicopter contract in place for urgent dispatch of personnel from YGP to the WHP to allow for prompt response to alarms.	2	B	Low	