Integrating human factors within MAE control measures: Error and ALARP in offshore petroleum activities

Joelle Mitchell

APPEA HSE Conference, Perth, September 2015

Human Factors and MAEs

- Humans interact with control measures
- Error can be a barrier-defeating factor
- Error risk can be addressed through adapted traditional risk management approaches

Reducing error risk

Typical approach

A433199

08/09/2015

A more accurate approach

A433199

08/09/2015

5

A deeper exploration

A433199

08/09/2015

Example – Texas City Refinery

March 23, 2005

- Isomerization unit start-up
- Operators overfilled the raffinate splitter tower
- Pressure relief devices activated
- Flammable liquid spurted from a blowdown stack
- No flare installed
- Ignition, explosion and fire
- 15 deaths, 180 injuries

Error analysis

A433199

08/09/2015

8

Possible controls

A433199 08/09/2015

Benefits of error analysis

- Classify potential high-risk errors
- Identify critical PSFs
- Develop targeted control measures
- Focus on prevention and mitigation
- Facilitate risk reduction to ALARP

Which errors?

- "Critical human tasks"
- Activities people are expected to perform:
 - as barriers against an incident
 - to prevent incident escalation
 - to support or maintain barriers during an incident

• OGP (2011). Human factors engineering in projects.

A suggested process

Identify critical human tasks

Tasks where:

- a procedure is a single point failure
- people interact with control measures
- error can lead to barrier failure
- barrier failure can lead to MAE

Identify error potential

- Task analysis can help
 - What errors are possible?
 - Classify errors by a taxonomy
 - What are the potential consequences?
 - What are the high-risk potential errors?

Identify PSFs

- People-level
 - Knowledge, skills, experiences
 - Health
- Job-level
 - Procedures
 - Equipment
 - Supervision
- Organisation-level
 - Culture & climate
 - Corporate strategy

Evaluate existing controls

• Prevention controls?

Mitigation controls?

Is error risk ALARP?

Develop additional controls

- Layered defences targeting error:
 - Eliminate the opportunity
 - Prevent the error
 - Reduce the impact error identification and recovery
 - Mitigate the consequences

Where to start?

- Evidence of uncontrolled error:
 - Events and dangerous occurrences
 - Existing controls have failed to mitigate error risk
- Performance-shaping factors:
 - Latent conditions
 - Broader implications

Summary

- Human error can facilitate barrier failure
- Error is most significant within critical human tasks
- Layered defences can reduce error risk
- Effective risk reduction includes:
 - error prevention
 - error mitigation

Online resources

www.nopsema.gov.au

A433199 08/09/2015 20

Questions

