• **Control measure:**
 – Means of eliminating, preventing, reducing or mitigating the risk of hazardous events arising at or near a facility

• **Hazard:**
 – A situation with the potential for causing harm

• **Major Accident Event (MAE)**
 – An event connected with the facility, including a natural event, having the potential to cause multiple fatalities of persons at or near the facility

• **Risk:**
 – A function of likelihood and consequence

• **Risk Assessment:**
 – The process of estimating the likelihood of specific consequences of a given severity
• **National Offshore Petroleum Safety and Environmental Management Authority**

• Petroleum and Greenhouse Gas Storage activities:
 – in Commonwealth waters
 – in state waters where powers conferred

• Regulation of:
 – Safety
 – Well integrity
 – Environmental management
Legislation – General duties

• Facility operators must take all reasonably practicable steps to ensure that:
 – The facility is safe and without risk to health
 – All work and other activities are carried out in a safe manner and without risk to health

• Specific duties include:
 – Implementation and maintenance of safe systems of work
 – Procedures and equipment for control of emergencies
• As Low As Reasonably Practicable
• No other practical measures can reasonably be taken to reduce risks further
• Involves assessment of:
 – The risk to be avoided
 – The cost involved
 – The benefit (risk reduction)
 – ‘Gross disproportion’ between cost and benefit
• Formal Safety Assessment
 – Identifies all hazards with the potential to cause a MAE
 – Assesses the risk
 – Identifies control measures to reduce the risk to ALARP

• Safety Management System
 – Identifies hazards to health and safety
 – Assesses the risk associated with each hazard
 – Identifies how risks will be reduced to ALARP
Control measures

• Reduce risk
 – Lower the likelihood
 – Minimise the consequence

• Includes:
 – Physical equipment
 – Process control systems
 – Procedures
 – Emergency plan
Hierarchy of controls – event control

- **Eliminate**
 - Remove the hazard
- **Prevent**
 - Lower the likelihood
- **Reduce**
 - Detect and limit escalation
- **Mitigate**
 - Protect life
Event control

Hazard
Hazard
Hazard
Hazard

Prevention Controls

EVENT

Mitigation Controls

Consequence
Consequence
Consequence
Consequence

Elimination Prevention Reduction Mitigation
Event example
Control types

• Eliminate
• Substitute
 – Use something else
• Engineer
 – Isolate the hazard
• Administrate
 – Do / avoid something
• Personal protective equipment
 – Wear something
• What is the hazard?
 – Vehicle interactions
• What is the potential event?
 – Crash
• What are the potential consequences?
 – Death
 – Injury
 – Damage
Control measures

<table>
<thead>
<tr>
<th>Eliminate</th>
<th>Prevent</th>
<th>Reduce</th>
<th>Mitigate</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Walk</td>
<td>• Driver training</td>
<td>• Collision avoidance technology</td>
<td>• Seatbelts</td>
</tr>
<tr>
<td>• Public transport</td>
<td>• Road rules</td>
<td>• ABS brakes</td>
<td>• Air bags</td>
</tr>
<tr>
<td>• Bicycle paths</td>
<td>• Headlights</td>
<td>• Traction control</td>
<td>• Crumple zones</td>
</tr>
<tr>
<td>• Vehicle separation</td>
<td>• Collision avoidance technology</td>
<td>• Defensive driver training</td>
<td></td>
</tr>
</tbody>
</table>

A421246 03/07/2015
• What does any of this have to do with organisational psychology?
• Humans interact with control measures
• Human error is a potential failure mechanism
• Errors can contribute to events
• We can consider the role of error:
 – in MAE causation
 – in the efficacy of control measures
 – in demonstrating ALARP
• Where do we start?
Critical human tasks

• Activities people are expected to perform:
 – as barriers against the occurrence of an incident
 – to prevent escalation
 – to support or maintain physical and technological barriers

Case study: BP Texas City refinery

• What is the MAE?

• What is the hazard?

• What is the critical human task?
Event summary

- March 23, 2005, 1:20pm
- Isomerization unit start-up
- Operators overfilled the raffinate splitter tower
- Pressure relief devices activated
- Flammable liquid spurted from a blowdown stack
- No flare installed
- Ignition, explosion and fire
- 15 deaths, 180 injuries
- $1.5 billion
• What is the MAE?
 – Explosion from hydrocarbon ignition

• What is the hazard?
 – Raffinate liquid

• What is the critical human task?
 – Operators were required to maintain the correct level of liquid in the raff tower
• Video - US Chemical Safety Board investigation
 – Human factors extract

• List the controls that failed
 – Where do they fit on the hierarchy?
Hierarchy of control

- **Eliminate**
 - Remove the hazard

- **Prevent**
 - Lower the likelihood

- **Reduce**
 - Detect and limit escalation

- **Mitigate**
 - Protect life
https://youtu.be/XuJtdQOU_Z4?t=35m6s

Note: Human factors content concludes at 44:17, video continues with other findings
<table>
<thead>
<tr>
<th>Control measures at BP</th>
</tr>
</thead>
</table>

Eliminate
- Not possible

Prevent
- Control Panel
- Instrumentation
- Alarms
- Supervision
- Communication
- Training
- Procedures
- Personnel

Reduce
- High level alarms
- Instrumentation
- Pressure relief devices
- Procedures

Mitigate
- Blowdown drum
- Vent stack
• Control panel
 – Flow data split between screens
 – No material balance indicator
• Instrumentation
 – Malfunctioning
• Alarms
 – Routine violation to fill tower past 9 feet
• Supervision
 – Absent
Prevention (2)

- Communication protocols
 - Poor
- Training
 - Poor quality
 - Poor risk awareness
- Procedures
 - Outdated
- Personnel
 - Not enough
• High level alarms
 – Broken
• Instrumentation
 – Malfunctioning
• Pressure relief devices
 – Switched to manual operation

• Possible but not present
 – High level ‘trip’ on tower
• Blowdown drum
 – Worked as designed
• Vent stack
 – Not upgraded to flare system
Multiple controls

Prevent
- Control Panel
- Instrumentation
- Alarms
- Supervision
- Communication
- Training
- Procedures
- Personnel

Reduce
- High level alarms
- Instrumentation
- Pressure relief devices

Mitigate
- Blowdown drum
- Vent stack
Multiple failures

Prevent
- Control Panel
- Instrumentation
- Alarms
- Supervision
- Communication
- Training
- Procedures
- Personnel

Reduce
- High level alarms
- Instrumentation
- Pressure relief devices

Mitigate
- Blowdown drum
- Vent stack
• How can we reduce error risk to ALARP?

• \(\text{risk} = \text{likelihood} \times \text{consequence} \)
Reducing error risk

- Organisation
- Individual
- Job

Error Prevention

- Minimise likelihood

Error Mitigation

- Minimise consequence
- Event
- Near Miss

Human Reliability

- Desired Performance
- Human Error
Prevent and mitigate error
Knowledge-based mistake

Prevention Controls

Mitigation Controls

Incorrect knowledge

Fatigue

Misleading HMI

Poor handover

Insufficient personnel

Tower overfill
Error prevention

- Incorrect knowledge
 - Training
 - Simulation
- Fatigue
 - Policy
 - Training
 - Drills
 - Competence assurance
- Misleading HMI
 - HF in design
 - Risk indicators
 - Communication conventions
 - Planning rules
 - Quality indicators
- Poor handover
 - Procedure
 - Risk indicators
 - Policy
- Insufficient personnel

Knowledge-based mistake
Error mitigation

Knowledge-based mistake

- HMI
- Maintenance
- Error management training
- Drills
- High-level trip
- Tower overfill
• Evidence-based practice!
• Evidence of uncontrolled error:
 – Events
 – Dangerous occurrences (could have but didn’t)
• Performance-shaping factors
 – Latent conditions
 – Broader implications
How to reduce error risk

- Identify critical human tasks
 - What errors are possible?
 - What are the consequences?
 - What are the performance-shaping factors (hazards)?

- Identify existing controls
 - Do they prevent and mitigate error?
 - Is risk reduced to ALARP?

- Develop appropriate controls
 - Eliminate the opportunity for error
 - Prevent – lower the likelihood of error
 - Reduce – facilitate error identification and recovery
 - Mitigate the consequences of error
• Human error can contribute to events
• Error risk is most significant for critical human tasks
• Apply a hierarchy of controls to reduce error risk
• Effective risk reduction includes:
 – error prevention
 – error management
• nopsema.gov.au
Questions?